Home
Class 12
MATHS
Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2...

Evaluate `("lim")_(nvecoo)sum_(k=1)^nk/(n^2+k^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}, \] we will follow a step-by-step approach. ### Step 1: Rewrite the expression We start by rewriting the limit: \[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}. \] ### Step 2: Factor out \(n^2\) from the denominator Next, we factor \(n^2\) out of the denominator: \[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2(1 + \frac{k^2}{n^2})} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n^2} \cdot \frac{k}{1 + \frac{k^2}{n^2}}. \] ### Step 3: Change the summation to a Riemann sum Now, we can express the summation in terms of \(x = \frac{k}{n}\): \[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{\frac{k}{n}}{1 + \left(\frac{k}{n}\right)^2} \cdot \frac{1}{n}. \] This is now in the form of a Riemann sum for the function \(f(x) = \frac{x}{1 + x^2}\) over the interval from \(0\) to \(1\). ### Step 4: Convert the summation to an integral As \(n\) approaches infinity, the summation converges to the integral: \[ L = \int_{0}^{1} \frac{x}{1 + x^2} \, dx. \] ### Step 5: Evaluate the integral To evaluate the integral, we can use the substitution \(u = 1 + x^2\), which gives \(du = 2x \, dx\) or \(dx = \frac{du}{2x}\). The limits change from \(x = 0\) to \(x = 1\) which corresponds to \(u = 1\) to \(u = 2\): \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + C. \] Thus, we have: \[ \int_{0}^{1} \frac{x}{1 + x^2} \, dx = \frac{1}{2} [\ln(2) - \ln(1)] = \frac{1}{2} \ln(2). \] ### Step 6: Final result Therefore, the limit evaluates to: \[ L = \frac{1}{2} \ln(2). \]

To evaluate the limit \[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}, \] we will follow a step-by-step approach. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Evaluate the limit: ("lim")_(x vec 1)(sum _(k=1) ^100 x^k-100)/(x-1)

If [x] denotes the greatest integer less than or equal to x , then evaluate ("lim")_(nvecoo)1/(n^3){[1^2x]+[2^2x]+[3^2x]+}[n^2x]}

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

The value of int_0^1lim_(n->oo)sum_(k =0)^n(x^(k+2)2^k)/(k!)dx is: (a) e ^(2) -1 (b) 2 (c) (e ^(2)-1)/(2) (d) (e ^(2) -1)/(4)

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  2. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  3. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  4. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  5. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  6. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  7. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  8. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  9. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  10. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  11. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  12. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  13. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  14. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  15. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  16. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  17. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  18. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  19. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  20. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |