Home
Class 12
MATHS
P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4s...

`P rov et h a t4lt=int_1^3sqrt(3+x^2)lt=4sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( 4 \leq \int_1^3 \sqrt{3 + x^2} \, dx \leq 4\sqrt{3} \), we will follow a systematic approach. ### Step 1: Establish the bounds for \( \sqrt{3 + x^2} \) Given that \( x \) lies in the interval \( [1, 3] \): - The minimum value of \( x^2 \) in this interval is \( 1^2 = 1 \). - The maximum value of \( x^2 \) in this interval is \( 3^2 = 9 \). Thus, we can establish: \[ 3 + 1 \leq 3 + x^2 \leq 3 + 9 \] which simplifies to: \[ 4 \leq 3 + x^2 \leq 12 \] ### Step 2: Take the square root Taking the square root of the inequalities: \[ \sqrt{4} \leq \sqrt{3 + x^2} \leq \sqrt{12} \] This simplifies to: \[ 2 \leq \sqrt{3 + x^2} \leq 2\sqrt{3} \] ### Step 3: Integrate the bounds Now, we will integrate the inequalities over the interval from 1 to 3: \[ \int_1^3 2 \, dx \leq \int_1^3 \sqrt{3 + x^2} \, dx \leq \int_1^3 2\sqrt{3} \, dx \] Calculating the left integral: \[ \int_1^3 2 \, dx = 2[x]_1^3 = 2(3 - 1) = 2 \times 2 = 4 \] Calculating the right integral: \[ \int_1^3 2\sqrt{3} \, dx = 2\sqrt{3}[x]_1^3 = 2\sqrt{3}(3 - 1) = 2\sqrt{3} \times 2 = 4\sqrt{3} \] ### Step 4: Combine the results From the integration results, we have: \[ 4 \leq \int_1^3 \sqrt{3 + x^2} \, dx \leq 4\sqrt{3} \] Thus, we have proved that: \[ 4 \leq \int_1^3 \sqrt{3 + x^2} \, dx \leq 4\sqrt{3} \] ### Conclusion Therefore, we conclude that: \[ 4 \leq \int_1^3 \sqrt{3 + x^2} \, dx \leq 4\sqrt{3} \] is indeed true. ---

To prove that \( 4 \leq \int_1^3 \sqrt{3 + x^2} \, dx \leq 4\sqrt{3} \), we will follow a systematic approach. ### Step 1: Establish the bounds for \( \sqrt{3 + x^2} \) Given that \( x \) lies in the interval \( [1, 3] \): - The minimum value of \( x^2 \) in this interval is \( 1^2 = 1 \). - The maximum value of \( x^2 \) in this interval is \( 3^2 = 9 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Prove that 4 lt= int_1^3 sqrt(3+x^2) dx lt= 4sqrt(3)

Prove that 4le int_(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30 .

If y=sqrt(x)+1/(sqrt(x)),p rov et h a t2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

The equation sin^4x-2cos^2x+a^2=0 can be solved if (a) -sqrt(3)lt=alt=sqrt(3) (b) sqrt(2)lt=alt=""sqrt(2) (c) -""1lt=alt=a (d) none of these

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx

Evaluate: int1/(sqrt(3x+4)-sqrt(3x+1))dxdot

Evaluate: int1/(sqrt(3x+4)-sqrt(3x+1))dxdot

Evaluate: int1/(sqrt(3x+4)-sqrt(3x+1))dxdot

Evaluate: (i)int1/(sqrt(3x+4)-sqrt(3x+1))dx

Prove that pi/6 lt int_0^1(dx) (sqrt(4-x^2-x^3)) lt pi/(4sqrt(2))

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  2. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  3. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  4. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  5. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  6. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  7. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  8. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  9. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  10. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  11. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  12. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  13. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  14. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  15. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  16. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  17. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  18. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  19. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  20. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |