Home
Class 12
MATHS
If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3...

`If I_1=int_0^1 2^x^2,I_2=int_0^1 2^x^3dx ,I_3=int_1^2^x^2dx ,I_4=int_1^2 2^x^3dx ,` then which of the following is/are ture?
a) `I_1> I_2`
(b) `I_2> I_2`
c)`I_3> I_4`
(d) `I_3 < I_4`

A

`I_(1)gtI_(2)`

B

`I_(2)gtI_(1)`

C

`I_(3)gtI_(4)`

D

`I_(3)ltI_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1, I_2, I_3, \) and \( I_4 \) and compare them based on the given conditions. ### Step 1: Evaluate \( I_1 \) and \( I_2 \) We have: \[ I_1 = \int_0^1 2^{x^2} \, dx \] \[ I_2 = \int_0^1 2^{x^3} \, dx \] **Comparison of \( I_1 \) and \( I_2 \)**: For \( x \) in the interval \( [0, 1] \): - Since \( x^2 > x^3 \) for \( 0 < x < 1 \), we have \( 2^{x^2} > 2^{x^3} \). Thus, we can conclude: \[ I_1 > I_2 \] ### Step 2: Evaluate \( I_3 \) and \( I_4 \) Next, we consider: \[ I_3 = \int_1^2 2^{x^2} \, dx \] \[ I_4 = \int_1^2 2^{x^3} \, dx \] **Comparison of \( I_3 \) and \( I_4 \)**: For \( x \) in the interval \( [1, 2] \): - Since \( x^2 < x^3 \) for \( x > 1 \), we have \( 2^{x^2} < 2^{x^3} \). Thus, we can conclude: \[ I_3 < I_4 \] ### Summary of Results From the evaluations: - \( I_1 > I_2 \) (True) - \( I_3 < I_4 \) (True) ### Conclusion The correct options are: - (a) \( I_1 > I_2 \) is true. - (d) \( I_3 < I_4 \) is true.

To solve the problem, we need to evaluate the integrals \( I_1, I_2, I_3, \) and \( I_4 \) and compare them based on the given conditions. ### Step 1: Evaluate \( I_1 \) and \( I_2 \) We have: \[ I_1 = \int_0^1 2^{x^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

IfI_1=int_0^1 2^(x^2)dx ,I_2=int_0^1 2^(x^3)dx ,I_3=int_1^2 2^(x^2)dx ,I_4=int_1^2 2^(x^3)dx , then which of the following is/are true?

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I_1=int_0^1(e^x)/(1+x) dx aand I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx then I_1/I_2 is

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

if I = int_0 ^1.7 [x^2]dx , then I equal is

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

Let I=int_0^1(sinx)/(sqrt(x))dx"and"J=int_0^1(cosx)/(sqrt(x))dx Then which one of the following is true? (1) I >2/3"and"j >2 (2) I 2 (4) I >2/3"and"j<2

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  2. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  3. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  4. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  5. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  6. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  7. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  8. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  9. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  10. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  13. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  14. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  15. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  16. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  17. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  18. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  19. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  20. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |