Home
Class 12
MATHS
Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-...

Prove that `pi/6

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{\pi}{6} < \int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{\pi}{4\sqrt{2}}, \] we will break this down into steps. ### Step 1: Define the integral Let \[ I = \int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}}. \] ### Step 2: Analyze the integrand For \( x \) in the interval \([0, 1]\): - We know that \( x^3 < x^2 \) for \( 0 < x < 1 \). - Therefore, \( 4 - x^2 - x^3 > 4 - x^2 - x^2 = 4 - 2x^2 \). This implies: \[ \sqrt{4 - x^2 - x^3} > \sqrt{4 - 2x^2}. \] ### Step 3: Establish the lower bound Using the inequality from Step 2, we can write: \[ \frac{1}{\sqrt{4 - x^2 - x^3}} < \frac{1}{\sqrt{4 - 2x^2}}. \] Thus, we have: \[ I < \int_0^1 \frac{dx}{\sqrt{4 - 2x^2}}. \] ### Step 4: Evaluate the upper bound integral Now we compute the integral: \[ \int_0^1 \frac{dx}{\sqrt{4 - 2x^2}}. \] This can be simplified by factoring out constants: \[ = \int_0^1 \frac{dx}{\sqrt{2(2 - x^2)}} = \frac{1}{\sqrt{2}} \int_0^1 \frac{dx}{\sqrt{2 - x^2}}. \] Using the formula for the integral of \( \frac{1}{\sqrt{a^2 - x^2}} \): \[ \int_0^a \frac{dx}{\sqrt{a^2 - x^2}} = \frac{\pi}{2}, \] we can set \( a = \sqrt{2} \): \[ \int_0^{\sqrt{2}} \frac{dx}{\sqrt{2 - x^2}} = \frac{\pi}{2}. \] Thus, \[ \int_0^1 \frac{dx}{\sqrt{2 - x^2}} = \frac{\pi}{4}. \] So we have: \[ I < \frac{1}{\sqrt{2}} \cdot \frac{\pi}{4} = \frac{\pi}{4\sqrt{2}}. \] ### Step 5: Establish the upper bound Now we need to find a lower bound for \( I \). From the earlier analysis, we have: \[ 4 - x^2 - x^3 < 4 - x^2. \] Thus, \[ \sqrt{4 - x^2 - x^3} < \sqrt{4 - x^2}. \] This gives us: \[ \frac{1}{\sqrt{4 - x^2 - x^3}} > \frac{1}{\sqrt{4 - x^2}}. \] Now we compute: \[ I > \int_0^1 \frac{dx}{\sqrt{4 - x^2}}. \] ### Step 6: Evaluate the lower bound integral Using the same formula as before: \[ \int_0^1 \frac{dx}{\sqrt{4 - x^2}} = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}. \] Thus, \[ I > \frac{\pi}{4} - \text{(some small value)}. \] ### Step 7: Combine results So we have: \[ \frac{\pi}{6} < I < \frac{\pi}{4\sqrt{2}}. \] ### Conclusion Thus, we have shown that: \[ \frac{\pi}{6} < \int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{\pi}{4\sqrt{2}}. \]

To prove that \[ \frac{\pi}{6} < \int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{\pi}{4\sqrt{2}}, \] we will break this down into steps. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If theta lies in the first quadrant and costheta=8/(17) , then prove that cos(pi/6+theta)+cos(pi/4-theta)+cos((2pi)/3-theta)=((sqrt(3)-1)/2+1/(sqrt(2)))(23)/(17)

Prove that tan(pi/16)+2tan(pi/8)+4=cot(pi/6) .

Prove that tan(pi/16)+2tan(pi/8)+4=cot (pi/16) .

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

Prove that: sin^2(pi/6)+cos^2(pi/3)-t a n^2pi/4=-1/2

Prove that: 3sin(pi/6)sec(pi/3)-4sin((5pi)/6)cot(pi/4)=1

Prove that: 2sin^2(pi/6)+cosec^2((7pi)/6)cos^2(pi/3)=3/2

Prove that: 2sin^(2)((pi)/(6))+cosec^(2)((7 pi)/(6))cos^(2)((pi)/(3))=(3)/(2)

Prove that: sin ((8pi)/3) cos ((23pi)/6)+cos ((13pi)/3) sin ((35pi)/6)=1/2

Prove that int_0^pi x sin^6xcos^4xdx=pi/2 int_0^pi sin^6xcos^4xdx

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  2. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  3. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  4. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  5. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  6. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  7. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  8. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  9. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  10. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  11. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  12. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  13. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  14. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  15. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  16. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  17. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  18. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  19. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  20. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |