Home
Class 12
MATHS
Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx....

Evaluate `int_(1)^(5)sqrt(x-2)sqrt(x-1)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{1}^{5} \sqrt{x-2} \sqrt{x-1} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand as: \[ I = \int_{1}^{5} \sqrt{(x-2)(x-1)} \, dx \] ### Step 2: Identify the critical points The expression under the square root, \((x-2)(x-1)\), becomes negative when \(x < 2\). Therefore, we need to split the integral at the point where the expression becomes zero, which is at \(x = 2\). ### Step 3: Split the integral We can split the integral into two parts: \[ I = \int_{1}^{2} \sqrt{(x-2)(x-1)} \, dx + \int_{2}^{5} \sqrt{(x-2)(x-1)} \, dx \] ### Step 4: Handle the negative values For \(x\) in the interval \([1, 2]\), \((x-2)(x-1)\) is negative. Thus, we take the negative of the square root: \[ I = \int_{1}^{2} -\sqrt{(2-x)(x-1)} \, dx + \int_{2}^{5} \sqrt{(x-2)(x-1)} \, dx \] ### Step 5: Evaluate the first integral Let’s evaluate the first integral: \[ \int_{1}^{2} -\sqrt{(2-x)(x-1)} \, dx \] We can use the substitution \(u = 2 - x\), which gives \(du = -dx\) and changes the limits from \(x=1\) to \(u=1\) and from \(x=2\) to \(u=0\): \[ \int_{1}^{2} -\sqrt{(2-x)(x-1)} \, dx = \int_{0}^{1} \sqrt{u(1-u)} \, du \] ### Step 6: Evaluate the second integral For the second integral: \[ \int_{2}^{5} \sqrt{(x-2)(x-1)} \, dx \] We can use the substitution \(v = x - 2\), which gives \(dv = dx\) and changes the limits from \(x=2\) to \(v=0\) and from \(x=5\) to \(v=3\): \[ \int_{2}^{5} \sqrt{(x-2)(x-1)} \, dx = \int_{0}^{3} \sqrt{v(v+1)} \, dv \] ### Step 7: Combine the integrals Now we have: \[ I = \int_{0}^{1} \sqrt{u(1-u)} \, du + \int_{0}^{3} \sqrt{v(v+1)} \, dv \] ### Step 8: Evaluate the integrals The integral \(\int_{0}^{1} \sqrt{u(1-u)} \, du\) can be evaluated using the Beta function or trigonometric substitution, and it equals \(\frac{\pi}{8}\). The integral \(\int_{0}^{3} \sqrt{v(v+1)} \, dv\) can be evaluated using integration techniques, and it results in a value that can be computed numerically or using a definite integral table. ### Step 9: Final calculation After evaluating both integrals, we can combine the results to find the total value of \(I\).

To evaluate the integral \( I = \int_{1}^{5} \sqrt{x-2} \sqrt{x-1} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand as: \[ I = \int_{1}^{5} \sqrt{(x-2)(x-1)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(1)^(2) (sqrt(x))/(sqrt(3-x) + sqrt(x)) dx .

Evaluate int(1)/(x+sqrt(x))dx

Evaluate: int((1+sqrt(x))^2)/(sqrt(x))dx

Evaluate: int1/(sqrt(x)(sqrt(x)+1))\ dx

Evaluate: int1/(sqrt(x)+sqrt(x+1))\ dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(dx)/(sqrt(1-x^2))

Evaluate int (1)/((x+1)sqrt(x-2))dx .

Evaluate: int(x-1)sqrt (x^2-2x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  2. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  3. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  4. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  5. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  6. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  7. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  8. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  9. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  10. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  11. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  12. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  13. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  14. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  15. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  16. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  17. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  18. Find the value of int(0)^(pi//2)sin2xlogtanxdx.

    Text Solution

    |

  19. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  20. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |