Home
Class 12
MATHS
Evaluate int(1)^(e^(6))[(logx)/3]dx, whe...

Evaluate `int_(1)^(e^(6))[(logx)/3]dx,` where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{1}^{e^{6}} \left\lfloor \frac{\log x}{3} \right\rfloor dx \), we will break it down step by step. ### Step 1: Determine the intervals for the greatest integer function The function \( \left\lfloor \frac{\log x}{3} \right\rfloor \) changes its value at specific points. We need to find the values of \( x \) where \( \frac{\log x}{3} \) is an integer. 1. Set \( \frac{\log x}{3} = n \), where \( n \) is an integer. 2. This implies \( \log x = 3n \) or \( x = e^{3n} \). Now, we will find the integer values of \( n \) for the interval \( x \in [1, e^{6}] \): - For \( n = 0 \): \( x = e^{0} = 1 \) - For \( n = 1 \): \( x = e^{3} \) - For \( n = 2 \): \( x = e^{6} \) Thus, the critical points are \( x = 1, e^{3}, e^{6} \). ### Step 2: Evaluate the integral in segments We can split the integral into two parts based on the critical points: \[ I = \int_{1}^{e^{3}} \left\lfloor \frac{\log x}{3} \right\rfloor dx + \int_{e^{3}}^{e^{6}} \left\lfloor \frac{\log x}{3} \right\rfloor dx \] ### Step 3: Evaluate the first integral \( \int_{1}^{e^{3}} \left\lfloor \frac{\log x}{3} \right\rfloor dx \) In the interval \( [1, e^{3}] \): - For \( x \in [1, e^{3}] \), \( \frac{\log x}{3} \) ranges from \( 0 \) to \( 1 \). - Thus, \( \left\lfloor \frac{\log x}{3} \right\rfloor = 0 \). So, we have: \[ \int_{1}^{e^{3}} 0 \, dx = 0 \] ### Step 4: Evaluate the second integral \( \int_{e^{3}}^{e^{6}} \left\lfloor \frac{\log x}{3} \right\rfloor dx \) In the interval \( [e^{3}, e^{6}] \): - For \( x \in [e^{3}, e^{6}] \), \( \frac{\log x}{3} \) ranges from \( 1 \) to \( 2 \). - Thus, \( \left\lfloor \frac{\log x}{3} \right\rfloor = 1 \). So, we have: \[ \int_{e^{3}}^{e^{6}} 1 \, dx = \left[ x \right]_{e^{3}}^{e^{6}} = e^{6} - e^{3} \] ### Step 5: Combine the results Now we combine the results from both integrals: \[ I = 0 + (e^{6} - e^{3}) = e^{6} - e^{3} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{e^{6} - e^{3}} \]

To evaluate the integral \( I = \int_{1}^{e^{6}} \left\lfloor \frac{\log x}{3} \right\rfloor dx \), we will break it down step by step. ### Step 1: Determine the intervals for the greatest integer function The function \( \left\lfloor \frac{\log x}{3} \right\rfloor \) changes its value at specific points. We need to find the values of \( x \) where \( \frac{\log x}{3} \) is an integer. 1. Set \( \frac{\log x}{3} = n \), where \( n \) is an integer. 2. This implies \( \log x = 3n \) or \( x = e^{3n} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  2. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  3. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  4. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  5. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  6. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  7. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  8. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  9. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  10. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  11. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  12. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  13. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  14. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  15. Find the value of int(0)^(pi//2)sin2xlogtanxdx.

    Text Solution

    |

  16. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  17. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |

  18. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  19. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  20. int0^(2pi)sin^(100)xcos^(99)x dx

    Text Solution

    |