Home
Class 12
MATHS
Find the value of int(-1)^1[x^2+{x}]dx ,...

Find the value of `int_(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot}` denote the greatest function and fractional parts of `x ,` respectively.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \left[ x^2 + \{ x \} \right] dx \), where \([ \cdot ]\) denotes the greatest integer function and \(\{ \cdot \}\) denotes the fractional part of \(x\), we will break the integral into two parts based on the intervals of \(x\). ### Step 1: Break the Integral into Two Parts The integral can be split into two intervals: from \(-1\) to \(0\) and from \(0\) to \(1\). \[ I = \int_{-1}^{0} \left[ x^2 + \{ x \} \right] dx + \int_{0}^{1} \left[ x^2 + \{ x \} \right] dx \] ### Step 2: Evaluate the Integral from \(-1\) to \(0\) In the interval \([-1, 0)\), the greatest integer function \([x]\) is \(-1\) and the fractional part \(\{x\} = x + 1\). Thus, we have: \[ I_1 = \int_{-1}^{0} \left[ x^2 + (x + 1) \right] dx = \int_{-1}^{0} \left[ x^2 + x + 1 \right] dx \] ### Step 3: Simplify the Expression Now, we can simplify the expression inside the integral: \[ I_1 = \int_{-1}^{0} (x^2 + x + 1) dx \] ### Step 4: Calculate the Integral from \(-1\) to \(0\) Now we calculate this integral: \[ I_1 = \int_{-1}^{0} x^2 dx + \int_{-1}^{0} x dx + \int_{-1}^{0} 1 dx \] Calculating each part: 1. \(\int_{-1}^{0} x^2 dx = \left[ \frac{x^3}{3} \right]_{-1}^{0} = 0 - \left( -\frac{1}{3} \right) = \frac{1}{3}\) 2. \(\int_{-1}^{0} x dx = \left[ \frac{x^2}{2} \right]_{-1}^{0} = 0 - \left( -\frac{1}{2} \right) = \frac{1}{2}\) 3. \(\int_{-1}^{0} 1 dx = [x]_{-1}^{0} = 0 - (-1) = 1\) Adding these results together: \[ I_1 = \frac{1}{3} + \frac{1}{2} + 1 = \frac{1}{3} + \frac{3}{6} + \frac{6}{6} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1 + 9}{6} = \frac{10}{6} = \frac{5}{3} \] ### Step 5: Evaluate the Integral from \(0\) to \(1\) In the interval \([0, 1)\), the greatest integer function \([x]\) is \(0\) and the fractional part \(\{x\} = x\). Thus, we have: \[ I_2 = \int_{0}^{1} \left[ x^2 + x \right] dx = \int_{0}^{1} (x^2 + x) dx \] ### Step 6: Calculate the Integral from \(0\) to \(1\) Calculating this integral: \[ I_2 = \int_{0}^{1} x^2 dx + \int_{0}^{1} x dx \] Calculating each part: 1. \(\int_{0}^{1} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{3} - 0 = \frac{1}{3}\) 2. \(\int_{0}^{1} x dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2} - 0 = \frac{1}{2}\) Adding these results together: \[ I_2 = \frac{1}{3} + \frac{1}{2} = \frac{2}{6} + \frac{3}{6} = \frac{5}{6} \] ### Step 7: Combine Both Parts Now, we combine both parts: \[ I = I_1 + I_2 = \frac{5}{3} + \frac{5}{6} \] Finding a common denominator (which is 6): \[ I = \frac{10}{6} + \frac{5}{6} = \frac{15}{6} = \frac{5}{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{5}{2}} \]

To solve the integral \( I = \int_{-1}^{1} \left[ x^2 + \{ x \} \right] dx \), where \([ \cdot ]\) denotes the greatest integer function and \(\{ \cdot \}\) denotes the fractional part of \(x\), we will break the integral into two parts based on the intervals of \(x\). ### Step 1: Break the Integral into Two Parts The integral can be split into two intervals: from \(-1\) to \(0\) and from \(0\) to \(1\). \[ I = \int_{-1}^{0} \left[ x^2 + \{ x \} \right] dx + \int_{0}^{1} \left[ x^2 + \{ x \} \right] dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

The number of integer belonging to the interval [-3, 30] but not belonging to the range of the function f(x)=x{x}-x[-x],x in R ,i slambdadot Find the value of lambda-5. (where [dot] and {dot} denotes the greatest integer function and fractional part respectively).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

The value of int_(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the greatest integer and fractional part of x) is equal to

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  2. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  3. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  4. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  5. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  6. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  7. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  8. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  9. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  10. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  11. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  12. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  13. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  14. Find the value of int(0)^(pi//2)sin2xlogtanxdx.

    Text Solution

    |

  15. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  16. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |

  17. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  18. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  19. int0^(2pi)sin^(100)xcos^(99)x dx

    Text Solution

    |

  20. For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^n(1-x)^ndxn in N , which of ...

    Text Solution

    |