Home
Class 12
MATHS
Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[...

Evaluate: `int_0^oo[2e^(-x)]dx ,w h e r e[x]` represents greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^\infty \lfloor 2e^{-x} \rfloor \, dx \] where \(\lfloor x \rfloor\) denotes the greatest integer function, we will follow these steps: ### Step 1: Analyze the function \(2e^{-x}\) The function \(2e^{-x}\) is a decreasing function. We need to find the points where this function takes on integer values. ### Step 2: Determine the range of \(2e^{-x}\) - At \(x = 0\): \[ 2e^{-0} = 2 \] - As \(x \to \infty\): \[ 2e^{-x} \to 0 \] ### Step 3: Find the points of discontinuity To find where \(2e^{-x}\) equals integers, we set: \[ 2e^{-x} = n \quad (n \text{ is an integer}) \] This gives: \[ e^{-x} = \frac{n}{2} \implies x = -\ln\left(\frac{n}{2}\right) = \ln(2) - \ln(n) \] ### Step 4: Identify the intervals for the greatest integer function 1. For \(0 \leq x < \ln(2)\): \[ 2e^{-x} \geq 1 \implies \lfloor 2e^{-x} \rfloor = 1 \] 2. For \(\ln(2) \leq x < \ln(1)\) (which is not applicable since \(\ln(1) = 0\)): \[ 2e^{-x} < 1 \implies \lfloor 2e^{-x} \rfloor = 0 \] ### Step 5: Set up the integral based on intervals Thus, we can split the integral into two parts: \[ I = \int_0^{\ln(2)} 1 \, dx + \int_{\ln(2)}^\infty 0 \, dx \] ### Step 6: Evaluate the integrals 1. Evaluate the first integral: \[ \int_0^{\ln(2)} 1 \, dx = [x]_0^{\ln(2)} = \ln(2) - 0 = \ln(2) \] 2. The second integral evaluates to zero: \[ \int_{\ln(2)}^\infty 0 \, dx = 0 \] ### Step 7: Combine the results Thus, the value of the integral \(I\) is: \[ I = \ln(2) + 0 = \ln(2) \] ### Final Answer \[ \int_0^\infty \lfloor 2e^{-x} \rfloor \, dx = \ln(2) \] ---

To evaluate the integral \[ I = \int_0^\infty \lfloor 2e^{-x} \rfloor \, dx \] where \(\lfloor x \rfloor\) denotes the greatest integer function, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(100)(x-[x]dx(w h e r e[dot] represents the greatest integer function).

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  2. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  3. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  4. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  5. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  6. Find the value of int(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx.

    Text Solution

    |

  7. Show that int0^pifx(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  8. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  9. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  10. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  11. Find the value of int(0)^(pi//2)sin2xlogtanxdx.

    Text Solution

    |

  12. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  13. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |

  14. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  15. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  16. int0^(2pi)sin^(100)xcos^(99)x dx

    Text Solution

    |

  17. For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^n(1-x)^ndxn in N , which of ...

    Text Solution

    |

  18. Evaluate: int0^pi log(1+cosx)dx

    Text Solution

    |

  19. Find the value of int0^1{(sin^(-1)x)//x}dx

    Text Solution

    |

  20. Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

    Text Solution

    |