Home
Class 12
MATHS
The value of the integral int3^6 sqrtx/(...

The value of the integral `int_3^6 sqrtx/(sqrt(9-x)+sqrtx)dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} \, dx, \] we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(b + a - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s apply this property to our integral. Here, \( a = 3 \) and \( b = 6 \), so \( b + a = 9 \). We can rewrite the integral as: \[ I = \int_{3}^{6} \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \, dx. \] ### Step 2: Rewrite the integral Now we have two expressions for \( I \): 1. \( I = \int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} \, dx \) (Equation 1) 2. \( I = \int_{3}^{6} \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \, dx \) (Equation 2) ### Step 3: Add the two equations Now, we can add both equations: \[ 2I = \int_{3}^{6} \left( \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} + \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \right) \, dx. \] ### Step 4: Simplify the expression Notice that the denominators are the same, so we can combine the fractions: \[ 2I = \int_{3}^{6} \frac{\sqrt{x} + \sqrt{9 - x}}{\sqrt{9-x} + \sqrt{x}} \, dx. \] This simplifies to: \[ 2I = \int_{3}^{6} 1 \, dx. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ 2I = \int_{3}^{6} 1 \, dx = [x]_{3}^{6} = 6 - 3 = 3. \] ### Step 6: Solve for \( I \) Now, we can find \( I \): \[ 2I = 3 \implies I = \frac{3}{2}. \] Thus, the value of the integral is \[ \boxed{\frac{3}{2}}. \]

To evaluate the integral \[ I = \int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} \, dx, \] we can use the property of definite integrals that states: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int (1-x) sqrtx dx

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)

The value of the integral int_(0)^(3) sqrt(3+x^(3))dx lies in the interval

The value of the integral int(x^(2)-4xsqrtx+6x-4sqrtx+1)/(x-2sqrtx+1)

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

int (1/sqrtx-sqrtx)dx

The value of definite integral int_0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrtx)= is

The value if definite integral int_(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+sqrt(2x+sqrt(5(4x-5)))] dx is equal to

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is