Home
Class 12
MATHS
Show that int0^pifx(sinx)dx=pi/2int0^pif...

Show that `int_0^pifx(sinx)dx=pi/2int_0^pif(sinx)dxdot`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \int_0^\pi f(x) \sin x \, dx = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx, \] we will follow these steps: ### Step 1: Define the integral Let \[ I = \int_0^\pi f(x) \sin x \, dx. \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals which states that \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, we take \( a = 0 \) and \( b = \pi \). Thus, we have: \[ I = \int_0^\pi f(\pi - x) \sin(\pi - x) \, dx. \] ### Step 3: Simplify the integral Using the identity \( \sin(\pi - x) = \sin x \), we can rewrite the integral: \[ I = \int_0^\pi f(\pi - x) \sin x \, dx. \] ### Step 4: Add the two integrals Now, we add the two expressions for \( I \): \[ 2I = \int_0^\pi f(x) \sin x \, dx + \int_0^\pi f(\pi - x) \sin x \, dx. \] ### Step 5: Combine the integrals This can be combined as: \[ 2I = \int_0^\pi \left( f(x) + f(\pi - x) \right) \sin x \, dx. \] ### Step 6: Change of variable Next, we will change the variable in the second integral. Let \( u = \sin x \). The limits of integration remain the same, and we have: \[ du = \cos x \, dx. \] When \( x = 0 \), \( u = 0 \) and when \( x = \pi \), \( u = 0 \). However, we need to consider the symmetry of the sine function. The integral can be expressed as: \[ \int_0^\pi f(\sin x) \, dx = \int_0^1 f(u) \frac{1}{\sqrt{1-u^2}} \, du. \] ### Step 7: Final expression Thus, we can express \( 2I \) in terms of the integral of \( f(\sin x) \): \[ 2I = \pi \int_0^1 f(u) \, du. \] ### Step 8: Solve for \( I \) Dividing both sides by 2, we get: \[ I = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx. \] ### Conclusion Thus, we have shown that: \[ \int_0^\pi f(x) \sin x \, dx = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx. \]

To show that \[ \int_0^\pi f(x) \sin x \, dx = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Show that int_0^pixf(sinx)dx=pi/2int_0^pif(sinx)dxdot

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

Evaluate: int_0^pix/(1+sinx)dx

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

int_0^pi tanx/(sinx+tanx)dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Find int_0^(pi/2)dx/(1+sinx)

int_0^(pi/2) cosx/(1+sinx)dx