Home
Class 12
MATHS
Find the value of int0^1x(1-x)^ndx...

Find the value of `int_0^1x(1-x)^ndx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 x(1-x)^n \, dx \), we can follow these steps: ### Step 1: Define the integral Let \[ I = \int_0^1 x(1-x)^n \, dx. \] ### Step 2: Substitute \( x \) with \( 1-x \) Now, we will perform a substitution by replacing \( x \) with \( 1-x \): \[ I = \int_0^1 (1-x)(1-(1-x))^n \, dx = \int_0^1 (1-x)x^n \, dx. \] ### Step 3: Simplify the integral The integral can be expressed as: \[ I = \int_0^1 (1-x)x^n \, dx = \int_0^1 (x^n - x^{n+1}) \, dx. \] ### Step 4: Separate the integrals Now we can separate the integral: \[ I = \int_0^1 x^n \, dx - \int_0^1 x^{n+1} \, dx. \] ### Step 5: Compute the integrals Using the formula for the integral of \( x^k \): \[ \int x^k \, dx = \frac{x^{k+1}}{k+1} + C, \] we calculate: \[ \int_0^1 x^n \, dx = \left[ \frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1^{n+1}}{n+1} - 0 = \frac{1}{n+1}, \] and \[ \int_0^1 x^{n+1} \, dx = \left[ \frac{x^{n+2}}{n+2} \right]_0^1 = \frac{1^{n+2}}{n+2} - 0 = \frac{1}{n+2}. \] ### Step 6: Substitute back into the equation Substituting these results back into our expression for \( I \): \[ I = \frac{1}{n+1} - \frac{1}{n+2}. \] ### Step 7: Simplify the expression Finding a common denominator: \[ I = \frac{(n+2) - (n+1)}{(n+1)(n+2)} = \frac{1}{(n+1)(n+2)}. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{(n+1)(n+2)}. \] ---

To solve the integral \( I = \int_0^1 x(1-x)^n \, dx \), we can follow these steps: ### Step 1: Define the integral Let \[ I = \int_0^1 x(1-x)^n \, dx. \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_0^1x(1-x)dx

Evaluate: int_0^1x(1-x)^n dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_0^1x(1-x)^5dx

If int_0^1e^-x^2dx=a , then find the value of int_0^1x^2e^-x^2dx in terms of a .

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

Find the value of int_0^1 2x^3-3x^2-x+1 3dxdot

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Find the value of int_0^1{(sin^(-1)x)//x}dx