Home
Class 12
MATHS
If a continuous function f on [0,a] sati...

If a continuous function `f` on `[0,a]` satisfies `f(x)f(a-x)=1,agt0`, then find the value of `int_(0)^(a)(dx)/(1+f(x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral: \[ I = \int_0^a \frac{dx}{1 + f(x)} \] where \( f(x) \) is a continuous function satisfying the condition \( f(x) f(a - x) = 1 \) for \( x \in [0, a] \). ### Step 1: Use the property of the function From the given property, we can express \( f(a - x) \) in terms of \( f(x) \): \[ f(a - x) = \frac{1}{f(x)} \] ### Step 2: Rewrite the integral Now, we can rewrite the integral \( I \) by substituting \( x \) with \( a - x \): \[ I = \int_0^a \frac{dx}{1 + f(a - x)} = \int_0^a \frac{dx}{1 + \frac{1}{f(x)}} \] ### Step 3: Simplify the integral Now simplify the expression: \[ \frac{1}{1 + \frac{1}{f(x)}} = \frac{f(x)}{f(x) + 1} \] Thus, we have: \[ I = \int_0^a \frac{f(x)}{f(x) + 1} \, dx \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^a \frac{dx}{1 + f(x)} \) 2. \( I = \int_0^a \frac{f(x)}{f(x) + 1} \, dx \) Adding these two equations: \[ 2I = \int_0^a \left( \frac{1}{1 + f(x)} + \frac{f(x)}{f(x) + 1} \right) dx \] ### Step 5: Simplify the combined integral The sum inside the integral simplifies as follows: \[ \frac{1}{1 + f(x)} + \frac{f(x)}{f(x) + 1} = \frac{1 + f(x)}{1 + f(x)} = 1 \] Thus, we have: \[ 2I = \int_0^a 1 \, dx = a \] ### Step 6: Solve for \( I \) Now, solving for \( I \): \[ I = \frac{a}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^a \frac{dx}{1 + f(x)} = \frac{a}{2} \]

To solve the given problem, we need to evaluate the integral: \[ I = \int_0^a \frac{dx}{1 + f(x)} \] where \( f(x) \) is a continuous function satisfying the condition \( f(x) f(a - x) = 1 \) for \( x \in [0, a] \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to