Home
Class 12
MATHS
The value of int-pi^pi cos^2x/[1+a^x].dx...

The value of `int_-pi^pi cos^2x/[1+a^x].dx`,a>0 is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \] where \( a > 0 \), we will follow these steps: ### Step 1: Set up the integral We start with the integral defined as: \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \] ### Step 2: Use the property of definite integrals Next, we will use the substitution \( x = -x \). Under this substitution, the limits of integration remain the same, and we have: \[ I = \int_{-\pi}^{\pi} \frac{\cos^2(-x)}{1 + a^{-x}} \, (-dx) \] Since \(\cos(-x) = \cos x\), we can simplify this to: \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + \frac{1}{a^x}} \, dx \] ### Step 3: Simplify the integral Now, simplifying the denominator: \[ 1 + a^{-x} = \frac{a^x + 1}{a^x} \] Thus, we can rewrite the integral as: \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x \cdot a^x}{a^x + 1} \, dx \] ### Step 4: Combine the two expressions for I Now we have two expressions for \( I \): 1. \( I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \) 2. \( I = \int_{-\pi}^{\pi} \frac{a^x \cos^2 x}{a^x + 1} \, dx \) Adding these two equations, we get: \[ 2I = \int_{-\pi}^{\pi} \left( \frac{\cos^2 x}{1 + a^x} + \frac{a^x \cos^2 x}{a^x + 1} \right) \, dx \] ### Step 5: Simplify the combined expression Now, we can combine the fractions: \[ \frac{\cos^2 x}{1 + a^x} + \frac{a^x \cos^2 x}{a^x + 1} = \frac{\cos^2 x (a^x + 1)}{(1 + a^x)(a^x + 1)} = \frac{\cos^2 x (1 + a^x)}{(1 + a^x)} = \cos^2 x \] Thus, we have: \[ 2I = \int_{-\pi}^{\pi} \cos^2 x \, dx \] ### Step 6: Evaluate the integral of cos² Now we can evaluate the integral: \[ \int_{-\pi}^{\pi} \cos^2 x \, dx = 2 \int_{0}^{\pi} \cos^2 x \, dx \] Using the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\): \[ \int_{0}^{\pi} \cos^2 x \, dx = \frac{1}{2} \int_{0}^{\pi} (1 + \cos 2x) \, dx = \frac{1}{2} \left[ x + \frac{\sin 2x}{2} \right]_{0}^{\pi} \] Evaluating this gives: \[ = \frac{1}{2} \left[ \pi + 0 - 0 \right] = \frac{\pi}{2} \] Thus, \[ \int_{-\pi}^{\pi} \cos^2 x \, dx = 2 \cdot \frac{\pi}{2} = \pi \] ### Step 7: Solve for I Substituting back, we have: \[ 2I = \pi \implies I = \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{2} \] ---

To solve the integral \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \] where \( a > 0 \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx,a gt 0 , is

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

The value of int_(0)^(2pi) cos^(99)x dx , is

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(pi)|cos x|^(3)dx is :

int_(0)^(pi/2) cos 2x dx

Evaluate int_0^pi x/(a^2-cos^2x)dx

Evaluate: int_(0)^(pi//2) cos2x dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k