Home
Class 12
MATHS
Evaluate int(0)^(pi)(x dx)/(1+cos alpha ...

Evaluate `int_(0)^(pi)(x dx)/(1+cos alpha sin x)`,where `0lt alpha lt pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] where \( 0 < \alpha < \pi \), we can follow these steps: ### Step 1: Set up the integral We start with the integral as given: \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \pi \), so we have: \[ I = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin(\pi - x)} \] Since \( \sin(\pi - x) = \sin x \), this simplifies to: \[ I = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin x} \] ### Step 3: Rewrite the integral Now, we can split the integral into two parts: \[ I = \int_{0}^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x} - \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] Notice that the second term is our original integral \( I \): \[ I = \frac{\pi}{1 + \cos \alpha \sin x} - I \] ### Step 4: Solve for \( I \) Now, we can add \( I \) to both sides: \[ 2I = \int_{0}^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x} \] Thus, we have: \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x} \] ### Step 5: Evaluate the integral Now we need to evaluate the integral: \[ \int_{0}^{\pi} \frac{dx}{1 + \cos \alpha \sin x} \] Using the substitution \( t = \tan\left(\frac{x}{2}\right) \), we have \( \sin x = \frac{2t}{1+t^2} \) and \( dx = \frac{2 \, dt}{1+t^2} \). The limits change from \( 0 \) to \( \infty \) as \( x \) goes from \( 0 \) to \( \pi \). Substituting these into the integral gives: \[ \int_{0}^{\infty} \frac{2 \, dt}{(1 + \cos \alpha \cdot \frac{2t}{1+t^2})(1+t^2)} \] This integral can be evaluated using standard techniques, leading to: \[ \int_{0}^{\pi} \frac{dx}{1 + \cos \alpha \sin x} = \frac{\pi}{\sin \alpha} \] ### Step 6: Substitute back to find \( I \) Now substituting this back into our equation for \( I \): \[ I = \frac{1}{2} \cdot \frac{\pi^2}{\sin \alpha} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi^2}{2 \sin \alpha} \]

To evaluate the integral \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x} \] where \( 0 < \alpha < \pi \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(dx)/(1+sin x)

Evaluate : int_(0)^(pi) |cos x| dx

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

int_(0)^(pi//2) x sin x cos x dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

Evaluate int_(0)^(pi)x^(2){(1+sin x)^(-2) cos x}dx

int_(0)^(pi) x sin x cos^(2)x\ dx

The value of int_(0)^(2pi) |cos x -sin x|dx is

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  2. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |

  3. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  4. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  5. int0^(2pi)sin^(100)xcos^(99)x dx

    Text Solution

    |

  6. For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^n(1-x)^ndxn in N , which of ...

    Text Solution

    |

  7. Evaluate: int0^pi log(1+cosx)dx

    Text Solution

    |

  8. Find the value of int0^1{(sin^(-1)x)//x}dx

    Text Solution

    |

  9. Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

    Text Solution

    |

  10. If I1=int0^pixf(sin^3x+cos^2x)dxand I2=int0^(pi/2)f(sin^3x+cos^2x)dx ...

    Text Solution

    |

  11. Evaluate: int(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

    Text Solution

    |

  12. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  13. Evaluate the following: int(-pi)^(pi)(1-x^(2))sinx cos^(2)x dx

    Text Solution

    |

  14. Evaluate the following: int(-1)^(1)(sin x-x^(2))/(3-|x|)dx

    Text Solution

    |

  15. Evaluate the following: int(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx

    Text Solution

    |

  16. int(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1...

    Text Solution

    |

  17. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  18. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  19. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  20. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |