Home
Class 12
MATHS
Find the value of int(0)^(2pi)1/(1+tan^(...

Find the value of `int_(0)^(2pi)1/(1+tan^(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \), we will follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \] ### Step 2: Use the Symmetry Property of Integrals We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In this case, we can express \( I \) as: \[ I = \int_{0}^{\pi} \frac{1}{1 + \tan^4 x} \, dx + \int_{\pi}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \] Using the substitution \( x = 2\pi - t \) in the second integral, we get: \[ \int_{\pi}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx = \int_{0}^{\pi} \frac{1}{1 + \tan^4(2\pi - t)} \, dt \] Since \( \tan(2\pi - t) = -\tan(t) \), we have: \[ \tan^4(2\pi - t) = \tan^4(t) \] Thus, \[ I = \int_{0}^{\pi} \frac{1}{1 + \tan^4 x} \, dx + \int_{0}^{\pi} \frac{1}{1 + \tan^4 x} \, dx = 2 \int_{0}^{\pi} \frac{1}{1 + \tan^4 x} \, dx \] So, \[ I = 2 \int_{0}^{\pi} \frac{1}{1 + \tan^4 x} \, dx \] ### Step 3: Change of Variables Next, we will change the variable in the integral: \[ I = 2 \int_{0}^{\pi} \frac{\cos^4 x}{\cos^4 x + \sin^4 x} \, dx \] This is achieved by rewriting \( \tan^4 x \) in terms of sine and cosine. ### Step 4: Use the Symmetry Again Now, we can express the integral as: \[ I = 2 \int_{0}^{\pi} \frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} \, dx \] This simplifies to: \[ I = 2 \int_{0}^{\pi} 1 \, dx = 2 \times \pi = 2\pi \] ### Step 5: Final Calculation Now we have: \[ I = 2 \int_{0}^{\pi} 1 \, dx = 2 \cdot \left( \frac{\pi}{2} \right) = \pi \] ### Conclusion Thus, the value of the integral is: \[ \boxed{\pi} \]

To solve the integral \( I = \int_{0}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \), we will follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2)1/(1+tan^2x)dx

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

Find the value of int _( 0) ^(pi//4) (sin x) ^(4) dx :

Find the value of int _( 0) ^(pi//4) (sin x) ^(4) dx :

Find the value of int_(-1)^1d/(dx)(tan^(-1)(1/x))dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

int_(0)^( pi/4)tan^(3)dx

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

The value of int_(0) ^(2pi) cos ^(-1) ((1- tan ^(2) ""(x)/(2 ))/(1+ tan ^(2)""(x)/(2))) dx is:

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |

  2. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  3. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  4. int0^(2pi)sin^(100)xcos^(99)x dx

    Text Solution

    |

  5. For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^n(1-x)^ndxn in N , which of ...

    Text Solution

    |

  6. Evaluate: int0^pi log(1+cosx)dx

    Text Solution

    |

  7. Find the value of int0^1{(sin^(-1)x)//x}dx

    Text Solution

    |

  8. Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

    Text Solution

    |

  9. If I1=int0^pixf(sin^3x+cos^2x)dxand I2=int0^(pi/2)f(sin^3x+cos^2x)dx ...

    Text Solution

    |

  10. Evaluate: int(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

    Text Solution

    |

  11. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  12. Evaluate the following: int(-pi)^(pi)(1-x^(2))sinx cos^(2)x dx

    Text Solution

    |

  13. Evaluate the following: int(-1)^(1)(sin x-x^(2))/(3-|x|)dx

    Text Solution

    |

  14. Evaluate the following: int(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx

    Text Solution

    |

  15. int(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1...

    Text Solution

    |

  16. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  17. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  18. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  19. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  20. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |