Home
Class 12
MATHS
For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^...

For `U_n=int_0^1x^n(2-x)^n dx ; V_n=int_0^1x^n(1-x)^ndxn in N ,` which of the following statement(s) is/are true? `U_n=2^n V_n` (b) `U_n=2^(-n)V_n` `U_n=2^(2n)V_n` (d) `V_n=2^(-2n)U_n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the integrals \( U_n \) and \( V_n \) given by: \[ U_n = \int_0^1 x^n (2-x)^n \, dx \] \[ V_n = \int_0^1 x^n (1-x)^n \, dx \] We will explore the relationship between \( U_n \) and \( V_n \). ### Step 1: Rewrite \( U_n \) We start with \( U_n \): \[ U_n = \int_0^1 x^n (2-x)^n \, dx \] Using the substitution \( x = 2t \), we have \( dx = 2 \, dt \). The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = 1 \), \( t = \frac{1}{2} \) Thus, we can rewrite \( U_n \): \[ U_n = \int_0^{1/2} (2t)^n (2 - 2t)^n \cdot 2 \, dt \] This simplifies to: \[ U_n = 2^{n+1} \int_0^{1/2} t^n (2(1-t))^n \, dt \] \[ U_n = 2^{n+1} \int_0^{1/2} t^n (2^n (1-t)^n) \, dt \] \[ U_n = 2^{2n+1} \int_0^{1/2} t^n (1-t)^n \, dt \] ### Step 2: Relate to \( V_n \) Now, we know that \( V_n \) is defined as: \[ V_n = \int_0^1 x^n (1-x)^n \, dx \] Using the same substitution \( x = 2t \) for \( V_n \): \[ V_n = \int_0^1 (2t)^n (1-2t)^n \cdot 2 \, dt \] The limits remain the same, and we can express \( V_n \): \[ V_n = 2^{n+1} \int_0^{1/2} t^n (1-2t)^n \, dt \] ### Step 3: Compare \( U_n \) and \( V_n \) Now we can relate \( U_n \) and \( V_n \): From our expressions, we have: \[ U_n = 2^{2n+1} \int_0^{1/2} t^n (1-t)^n \, dt \] \[ V_n = 2^{n+1} \int_0^{1/2} t^n (1-2t)^n \, dt \] We can express \( U_n \) in terms of \( V_n \): \[ U_n = 2^{2n+1} \cdot \frac{1}{2^{n+1}} V_n \] This simplifies to: \[ U_n = 2^{n} V_n \] ### Conclusion Thus, the relationship we derived is: \[ U_n = 2^{2n} V_n \] Now, we can analyze the given options: 1. \( U_n = 2^n V_n \) - False 2. \( U_n = 2^{-n} V_n \) - False 3. \( U_n = 2^{2n} V_n \) - True 4. \( V_n = 2^{-2n} U_n \) - True ### Final Answer The true statements are: - \( U_n = 2^{2n} V_n \) - \( V_n = 2^{-2n} U_n \)

To solve the problem, we need to analyze the integrals \( U_n \) and \( V_n \) given by: \[ U_n = \int_0^1 x^n (2-x)^n \, dx \] \[ V_n = \int_0^1 x^n (1-x)^n \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If U_n=int_0^1x^n(2-x)^ndxa n dV_n=int_0^1x^n(1-x)^n dx ,n in N , and if (V_n)/(U_n)=1024 , then the value of n is________

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N , Then (a) A_(n+1)=A_n (b) B_(n+1)=B_n (c) A_(n+1)-A_n=B_(n+1) (d) B_(n+1)-B_n=A_(n+1)

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  2. int0^(2pi)sin^(100)xcos^(99)x dx

    Text Solution

    |

  3. For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^n(1-x)^ndxn in N , which of ...

    Text Solution

    |

  4. Evaluate: int0^pi log(1+cosx)dx

    Text Solution

    |

  5. Find the value of int0^1{(sin^(-1)x)//x}dx

    Text Solution

    |

  6. Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

    Text Solution

    |

  7. If I1=int0^pixf(sin^3x+cos^2x)dxand I2=int0^(pi/2)f(sin^3x+cos^2x)dx ...

    Text Solution

    |

  8. Evaluate: int(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

    Text Solution

    |

  9. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  10. Evaluate the following: int(-pi)^(pi)(1-x^(2))sinx cos^(2)x dx

    Text Solution

    |

  11. Evaluate the following: int(-1)^(1)(sin x-x^(2))/(3-|x|)dx

    Text Solution

    |

  12. Evaluate the following: int(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx

    Text Solution

    |

  13. int(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1...

    Text Solution

    |

  14. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  15. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  16. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  17. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  18. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  19. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  20. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |