Home
Class 12
MATHS
Evaluate: int(-pi/2)^(pi/2)sin^2xcos^2x(...

Evaluate: `int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx, \] we can start by expanding the integrand: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \sin x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \cos x \, dx. \] Let's denote these two integrals as: \[ I_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \cos^2 x \, dx, \] \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, dx. \] Thus, we have: \[ I = I_1 + I_2. \] ### Step 1: Evaluate \(I_1\) The function \(\sin^3 x \cos^2 x\) is an odd function because \(\sin^3(-x) = -\sin^3(x)\) and \(\cos^2(-x) = \cos^2(x)\). Therefore, the integral of an odd function over symmetric limits is zero: \[ I_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \cos^2 x \, dx = 0. \] ### Step 2: Evaluate \(I_2\) Now we consider \(I_2\): \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, dx. \] The function \(\sin^2 x \cos^3 x\) is an even function because \(\sin^2(-x) = \sin^2(x)\) and \(\cos^3(-x) = -\cos^3(x)\). Thus, we can simplify the integral: \[ I_2 = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, dx. \] ### Step 3: Use substitution Now we can use the substitution \(t = \sin x\), which gives \(dt = \cos x \, dx\). The limits change from \(x = 0\) to \(x = \frac{\pi}{2}\), which corresponds to \(t = 0\) to \(t = 1\). Thus: \[ I_2 = 2 \int_{0}^{1} t^2 (1 - t^2) \, dt, \] where we used \(\sin^2 x = t^2\) and \(\cos^3 x = (1 - t^2)^{3/2}\). ### Step 4: Evaluate the integral Now we can expand the integrand: \[ I_2 = 2 \int_{0}^{1} (t^2 - t^4) \, dt. \] Calculating the integral: \[ = 2 \left[ \frac{t^3}{3} - \frac{t^5}{5} \right]_{0}^{1} = 2 \left( \frac{1}{3} - \frac{1}{5} \right). \] Finding a common denominator (15): \[ = 2 \left( \frac{5}{15} - \frac{3}{15} \right) = 2 \cdot \frac{2}{15} = \frac{4}{15}. \] ### Final Result Thus, we have: \[ I = I_1 + I_2 = 0 + \frac{4}{15} = \frac{4}{15}. \] So, the final answer is: \[ \boxed{\frac{4}{15}}. \]

To evaluate the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx, \] we can start by expanding the integrand: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate : int_(-pi/2)^(pi/2)xcos^2 xdx

Evaluate : int_(-pi/2)^(pi/2)xcos^2 xdx

int_(-pi/2)^(pi/2)cosx dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

int_(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

    Text Solution

    |

  2. If I1=int0^pixf(sin^3x+cos^2x)dxand I2=int0^(pi/2)f(sin^3x+cos^2x)dx ...

    Text Solution

    |

  3. Evaluate: int(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

    Text Solution

    |

  4. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  5. Evaluate the following: int(-pi)^(pi)(1-x^(2))sinx cos^(2)x dx

    Text Solution

    |

  6. Evaluate the following: int(-1)^(1)(sin x-x^(2))/(3-|x|)dx

    Text Solution

    |

  7. Evaluate the following: int(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx

    Text Solution

    |

  8. int(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1...

    Text Solution

    |

  9. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  10. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  11. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  12. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  13. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  14. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  15. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |

  16. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  17. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  18. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  19. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  20. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |