Home
Class 12
MATHS
Evaluate: int0^(100)(x-[x]dx(w h e r e[d...

Evaluate: `int_0^(100)(x-[x]dx(w h e r e[dot]` represents the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_0^{100} \left( x - [x] \right) \, dx \] where \([x]\) represents the greatest integer function (also known as the floor function), we can follow these steps: ### Step 1: Rewrite the integrand The expression \( x - [x] \) represents the fractional part of \( x \), denoted as \(\{x\}\). Thus, we can rewrite the integral as: \[ \int_0^{100} \{x\} \, dx \] ### Step 2: Understand the periodicity The fractional part function \(\{x\}\) is periodic with a period of 1. This means that the behavior of \(\{x\}\) from 0 to 1 will repeat for each integer interval. Therefore, we can express the integral from 0 to 100 as: \[ \int_0^{100} \{x\} \, dx = \int_0^{1} \{x\} \, dx \times 100 \] ### Step 3: Evaluate the integral from 0 to 1 Now, we need to evaluate the integral: \[ \int_0^{1} \{x\} \, dx \] In the interval from 0 to 1, \(\{x\} = x\). Thus, we can rewrite the integral as: \[ \int_0^{1} x \, dx \] ### Step 4: Calculate the integral The integral of \(x\) from 0 to 1 is calculated as follows: \[ \int_0^{1} x \, dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] ### Step 5: Multiply by the number of periods Since we have established that the integral from 0 to 100 can be expressed as 100 times the integral from 0 to 1, we have: \[ \int_0^{100} \{x\} \, dx = 100 \times \frac{1}{2} = 50 \] ### Final Answer Thus, the value of the integral is: \[ \int_0^{100} \left( x - [x] \right) \, dx = 50 \] ---

To evaluate the integral \[ \int_0^{100} \left( x - [x] \right) \, dx \] where \([x]\) represents the greatest integer function (also known as the floor function), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: ("lim")_(xvec0)(sinx)/x,w h e r e[dot] represents the greatest integer function.

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

The value of int_0^(2pi)[2sinx]dx ,w h e r e[dot] represents the greatest integral function, is (a) (-5pi)/3 (b) -pi (c) (5pi)/3 (d) -2pi

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following: int(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx

    Text Solution

    |

  2. int(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1...

    Text Solution

    |

  3. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  4. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  5. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  6. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  7. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  8. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  9. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |

  10. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  11. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  12. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  13. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  14. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  15. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  16. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  17. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  18. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  19. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  20. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |