Home
Class 12
MATHS
Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x...

`Ifint_0^(npi)f(cos^2x)dx=kint_0^pif(cos^2x)dx , then find the value of k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^{n\pi} f(\cos^2 x) \, dx \) and relate it to \( \int_0^{\pi} f(\cos^2 x) \, dx \). ### Step-by-Step Solution: 1. **Understanding the periodicity of \( \cos^2 x \)**: The function \( \cos^2 x \) is periodic with a period of \( \pi \). This means that the integral of \( f(\cos^2 x) \) over any interval of length \( \pi \) will be the same. 2. **Breaking down the integral**: We can express the integral from \( 0 \) to \( n\pi \) as a sum of integrals over intervals of length \( \pi \): \[ \int_0^{n\pi} f(\cos^2 x) \, dx = \int_0^{\pi} f(\cos^2 x) \, dx + \int_{\pi}^{2\pi} f(\cos^2 x) \, dx + \ldots + \int_{(n-1)\pi}^{n\pi} f(\cos^2 x) \, dx \] 3. **Using the periodicity**: Since \( \cos^2 x \) is periodic with period \( \pi \), each of these integrals is equal: \[ \int_{\pi}^{2\pi} f(\cos^2 x) \, dx = \int_0^{\pi} f(\cos^2 x) \, dx \] Therefore, we have: \[ \int_0^{n\pi} f(\cos^2 x) \, dx = n \int_0^{\pi} f(\cos^2 x) \, dx \] 4. **Relating the integrals**: From the problem statement, we know: \[ \int_0^{n\pi} f(\cos^2 x) \, dx = k \int_0^{\pi} f(\cos^2 x) \, dx \] Setting the two expressions for \( \int_0^{n\pi} f(\cos^2 x) \, dx \) equal gives us: \[ n \int_0^{\pi} f(\cos^2 x) \, dx = k \int_0^{\pi} f(\cos^2 x) \, dx \] 5. **Solving for \( k \)**: Assuming \( \int_0^{\pi} f(\cos^2 x) \, dx \neq 0 \), we can divide both sides by \( \int_0^{\pi} f(\cos^2 x) \, dx \): \[ k = n \] ### Final Answer: The value of \( k \) is \( n \).

To solve the problem, we need to evaluate the integral \( \int_0^{n\pi} f(\cos^2 x) \, dx \) and relate it to \( \int_0^{\pi} f(\cos^2 x) \, dx \). ### Step-by-Step Solution: 1. **Understanding the periodicity of \( \cos^2 x \)**: The function \( \cos^2 x \) is periodic with a period of \( \pi \). This means that the integral of \( f(\cos^2 x) \) over any interval of length \( \pi \) will be the same. 2. **Breaking down the integral**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Ifint_0^(npi)f(cos^2x)dx=kint_0^pif(cos^2x)dx ,t h e nfin dt h ev a l u ekdot

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If int_0^1(3x^2+2x+k)dx=0, find the value of k

If int_0^1(3x^2+2x+k)dx=0, find the value of kdot

If int_0^1(3x^2+2x+k)dx=0, find the value of kdot

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

Statement-1: int_(0)^(npi+v)|sin x|dx=2n+1-cos v where n in N and 0 le v lt pi . Stetement-2: If f(x) is a periodic function with period T, then (i) int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx , where n in N and (ii) int_(nT)^(nT+a) f(x)dx=int_(0)^(a) f(x) dx , where n in N

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  2. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  3. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  4. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  5. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  6. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  7. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |

  8. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  9. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  10. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  11. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  12. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  13. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  14. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  15. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  16. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  17. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  18. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  19. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  20. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |