Home
Class 12
MATHS
Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx...

Evaluate `int_(0)^(npi+t)(|cosx|+|sinx|)dx,` where `n epsilonN` and `t epsilon[0,pi//2]`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{n\pi + t} (|\cos x| + |\sin x|) \, dx \] where \( n \in \mathbb{N} \) and \( t \in [0, \frac{\pi}{2}] \), we can follow these steps: ### Step 1: Break the Integral into Two Parts We can split the integral into two parts: \[ I = \int_{0}^{n\pi} (|\cos x| + |\sin x|) \, dx + \int_{n\pi}^{n\pi + t} (|\cos x| + |\sin x|) \, dx \] ### Step 2: Evaluate the First Integral The functions \( |\cos x| \) and \( |\sin x| \) are periodic with period \( \pi \). Therefore, we can evaluate the first integral from \( 0 \) to \( n\pi \): \[ \int_{0}^{n\pi} (|\cos x| + |\sin x|) \, dx = n \int_{0}^{\pi} (|\cos x| + |\sin x|) \, dx \] ### Step 3: Evaluate the Integral from \( 0 \) to \( \pi \) Now we need to calculate \( \int_{0}^{\pi} (|\cos x| + |\sin x|) \, dx \). Since both \( |\cos x| \) and \( |\sin x| \) are non-negative in the interval \( [0, \pi] \): \[ \int_{0}^{\pi} (|\cos x| + |\sin x|) \, dx = \int_{0}^{\pi} \cos x \, dx + \int_{0}^{\pi} \sin x \, dx \] Calculating these integrals: 1. \( \int_{0}^{\pi} \cos x \, dx = [\sin x]_{0}^{\pi} = \sin(\pi) - \sin(0) = 0 - 0 = 0 \) 2. \( \int_{0}^{\pi} \sin x \, dx = [-\cos x]_{0}^{\pi} = -\cos(\pi) + \cos(0) = 1 + 1 = 2 \) Thus, \[ \int_{0}^{\pi} (|\cos x| + |\sin x|) \, dx = 0 + 2 = 2 \] ### Step 4: Substitute Back Now substituting back into our expression for \( I \): \[ I = n \cdot 2 + \int_{n\pi}^{n\pi + t} (|\cos x| + |\sin x|) \, dx = 2n + \int_{n\pi}^{n\pi + t} (|\cos x| + |\sin x|) \, dx \] ### Step 5: Evaluate the Second Integral Next, we need to evaluate \( \int_{n\pi}^{n\pi + t} (|\cos x| + |\sin x|) \, dx \). In the interval \( [n\pi, n\pi + t] \), where \( t \in [0, \frac{\pi}{2}] \): - \( \cos x \) will be \( (-1)^n \cos(t) \) - \( \sin x \) will be \( \sin(t) \) Thus, we have: \[ \int_{n\pi}^{n\pi + t} (|\cos x| + |\sin x|) \, dx = \int_{0}^{t} (|\cos(n\pi + x)| + |\sin(n\pi + x)|) \, dx \] Since \( |\cos(n\pi + x)| = |(-1)^n \cos x| = (-1)^n \cos x \) and \( |\sin(n\pi + x)| = \sin x \): \[ \int_{0}^{t} (|\cos(n\pi + x)| + |\sin(n\pi + x)|) \, dx = \int_{0}^{t} ((-1)^n \cos x + \sin x) \, dx \] ### Step 6: Calculate the Final Integral Calculating this integral: \[ \int_{0}^{t} (-1)^n \cos x \, dx + \int_{0}^{t} \sin x \, dx \] 1. \( \int_{0}^{t} \cos x \, dx = [\sin x]_{0}^{t} = \sin t - 0 = \sin t \) 2. \( \int_{0}^{t} \sin x \, dx = [-\cos x]_{0}^{t} = -\cos t + 1 = 1 - \cos t \) Thus, we have: \[ \int_{0}^{t} (|\cos(n\pi + x)| + |\sin(n\pi + x)|) \, dx = (-1)^n \sin t + (1 - \cos t) \] ### Step 7: Combine Everything Finally, combining everything: \[ I = 2n + (-1)^n \sin t + (1 - \cos t) \] ### Final Answer Thus, the value of the integral is: \[ I = 2n + (-1)^n \sin t + 1 - \cos t \]

To evaluate the integral \[ I = \int_{0}^{n\pi + t} (|\cos x| + |\sin x|) \, dx \] where \( n \in \mathbb{N} \) and \( t \in [0, \frac{\pi}{2}] \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(2pi)|cosx|dx

int_(0)^(pi)|cosx|dx=?

Evaluate: int_0^(pi//2)cosx\ dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate -int_(2pi)^(0)|sinx|dx

Evaluate: int_0^(pi//2)sinx\ dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  2. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  3. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  4. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  5. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  6. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |

  7. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  8. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  9. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  10. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  11. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  12. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  13. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  14. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  15. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  16. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  17. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  18. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  19. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  20. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |