Home
Class 12
MATHS
Find the value of : int0^(10)e^(2x-[2x])...

Find the value of : `int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot]` denotes the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{10} e^{2x - [2x]} d(x - [x]) \] where \([x]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Understanding the Integral The expression \(d(x - [x])\) represents the differential of the fractional part of \(x\), which is \(x - [x]\). The fractional part of \(x\) is periodic with a period of 1. ### Step 2: Splitting the Integral Since \(x\) ranges from 0 to 10, we can split the integral into intervals of length 1: \[ I = \sum_{n=0}^{9} \int_n^{n+1} e^{2x - [2x]} d(x - [x]) \] In each interval \([n, n+1)\), \([2x] = 2n\) for \(x \in [n, n+1)\) when \(n\) is an integer. Thus, we can rewrite \(I\) as: \[ I = \sum_{n=0}^{9} \int_n^{n+1} e^{2x - 2n} d(x - [x]) \] ### Step 3: Evaluating the Integral The differential \(d(x - [x])\) is equal to \(dx\) since \(x - [x]\) is differentiable in each interval. Therefore, we can write: \[ I = \sum_{n=0}^{9} \int_n^{n+1} e^{2x - 2n} dx \] ### Step 4: Simplifying the Integral Now, we can simplify the integral: \[ I = \sum_{n=0}^{9} e^{-2n} \int_n^{n+1} e^{2x} dx \] The integral \(\int e^{2x} dx\) is: \[ \int e^{2x} dx = \frac{1}{2} e^{2x} + C \] Thus, we evaluate: \[ \int_n^{n+1} e^{2x} dx = \left[ \frac{1}{2} e^{2x} \right]_n^{n+1} = \frac{1}{2} (e^{2(n+1)} - e^{2n}) = \frac{1}{2} e^{2n} (e^2 - 1) \] ### Step 5: Putting It All Together Substituting this back into our expression for \(I\): \[ I = \sum_{n=0}^{9} e^{-2n} \cdot \frac{1}{2} e^{2n} (e^2 - 1) \] This simplifies to: \[ I = \frac{(e^2 - 1)}{2} \sum_{n=0}^{9} 1 = \frac{(e^2 - 1)}{2} \cdot 10 \] Thus, we have: \[ I = 5(e^2 - 1) \] ### Final Answer So the final value of the integral is: \[ I = 5(e^2 - 1) \] ---

To solve the integral \[ I = \int_0^{10} e^{2x - [2x]} d(x - [x]) \] where \([x]\) denotes the greatest integer function, we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(100)(x-[x]dx(w h e r e[dot] represents the greatest integer function).

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx , then find the value of k

    Text Solution

    |

  2. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  3. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  4. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  5. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |

  6. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  7. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  8. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  9. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  10. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  11. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  12. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  13. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  14. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  15. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  16. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  17. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  18. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  19. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  20. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |