Home
Class 12
MATHS
Let f(x) be a differentiable function sa...

Let `f(x)` be a differentiable function satisfying `f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt`, then find the value of `f''(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f''(0) \) for the function defined as \[ f(x) = \int_{0}^{x} e^{(2tx - t^2)} \cos(x - t) \, dt, \] we will follow these steps: ### Step 1: Differentiate \( f(x) \) Using the Leibniz rule for differentiation under the integral sign, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \int_{0}^{x} e^{(2tx - t^2)} \cos(x - t) \, dt \right) = e^{(2xx - x^2)} \cos(0) + \int_{0}^{x} \frac{\partial}{\partial x} \left( e^{(2tx - t^2)} \cos(x - t) \right) dt. \] ### Step 2: Evaluate \( f'(x) \) The first term simplifies to: \[ e^{(2x^2 - x^2)} \cdot 1 = e^{x^2}. \] Now we need to compute the integral term: \[ \int_{0}^{x} \left( 2te^{(2tx - t^2)} \cos(x - t) - e^{(2tx - t^2)} \sin(x - t) \right) dt. \] Thus, we have: \[ f'(x) = e^{x^2} + \int_{0}^{x} \left( 2te^{(2tx - t^2)} \cos(x - t) - e^{(2tx - t^2)} \sin(x - t) \right) dt. \] ### Step 3: Differentiate \( f'(x) \) to find \( f''(x) \) Next, we differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx} \left( e^{x^2} \right) + \frac{d}{dx} \left( \int_{0}^{x} \left( 2te^{(2tx - t^2)} \cos(x - t) - e^{(2tx - t^2)} \sin(x - t) \right) dt \right). \] The derivative of \( e^{x^2} \) is: \[ 2xe^{x^2}. \] Using the Leibniz rule again for the integral: \[ f''(x) = 2xe^{x^2} + \left( 2xe^{(2xx - x^2)} \cos(0) - e^{(2xx - x^2)} \sin(0) \right) + \int_{0}^{x} \frac{\partial}{\partial x} \left( 2te^{(2tx - t^2)} \cos(x - t) - e^{(2tx - t^2)} \sin(x - t) \right) dt. \] ### Step 4: Evaluate \( f''(0) \) Now, we substitute \( x = 0 \): - The term \( 2xe^{x^2} \) becomes \( 0 \). - The first term from the integral also becomes \( 0 \) since both upper and lower limits are the same. Thus, we have: \[ f''(0) = 2 \cdot 0 \cdot e^{0} + 0 + 0 = 0. \] ### Final Answer Therefore, the value of \( f''(0) \) is \[ \boxed{0}. \]

To find the value of \( f''(0) \) for the function defined as \[ f(x) = \int_{0}^{x} e^{(2tx - t^2)} \cos(x - t) \, dt, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

A differentiable function satisfies f(x) = int_(0)^(x) (f(t) cot t - cos(t - x))dt . Which of the following hold(s) good?

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  6. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(7)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |