Home
Class 12
MATHS
If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AA...

If `f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1`, then prove that `f(x)=f(1/x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( f(x) = f\left(\frac{1}{x}\right) \) for the function defined as \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t+t^2} \, dt \quad \text{for } x > 1, \] we will start by calculating \( f\left(\frac{1}{x}\right) \). ### Step 1: Write down \( f\left(\frac{1}{x}\right) \) We have: \[ f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\log t}{1+t+t^2} \, dt. \] ### Step 2: Change of variable Now, we will perform a change of variable. Let \( t = \frac{1}{y} \). Then, we have: \[ dt = -\frac{1}{y^2} \, dy. \] ### Step 3: Change the limits of integration When \( t = 1 \), \( y = 1 \). When \( t = \frac{1}{x} \), \( y = x \). Thus, the limits of integration change from \( 1 \) to \( \frac{1}{x} \) to \( 1 \) to \( x \). ### Step 4: Substitute and simplify Now substituting in the integral, we get: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log\left(\frac{1}{y}\right)}{1+\frac{1}{y}+\left(\frac{1}{y}\right)^2} \left(-\frac{1}{y^2}\right) dy. \] ### Step 5: Simplify the logarithm and the denominator The logarithm simplifies as follows: \[ \log\left(\frac{1}{y}\right) = -\log y. \] The denominator simplifies to: \[ 1 + \frac{1}{y} + \frac{1}{y^2} = \frac{y^2 + y + 1}{y^2}. \] Thus, we have: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{-\log y}{\frac{y^2 + y + 1}{y^2}} \left(-\frac{1}{y^2}\right) dy = \int_{1}^{x} \frac{\log y}{1 + y + y^2} dy. \] ### Step 6: Conclude the proof This shows that: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log y}{1 + y + y^2} \, dy = f(x). \] Thus, we conclude that: \[ f(x) = f\left(\frac{1}{x}\right). \]

To prove that \( f(x) = f\left(\frac{1}{x}\right) \) for the function defined as \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t+t^2} \, dt \quad \text{for } x > 1, \] we will start by calculating \( f\left(\frac{1}{x}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)=f(1/x)dot

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f''(1)-f'(1) is:

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f'''(1)-f''(1) is:

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  6. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(7)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |