Home
Class 12
MATHS
f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+...

`f(x)=int_1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof` `f(e^2)-f(1/(e^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(e^2) - f\left(\frac{1}{e^2}\right) \) where \[ f(x) = \int_1^x \frac{\tan^{-1}(t)}{t} \, dt. \] ### Step-by-step Solution: 1. **Define the function**: \[ f(x) = \int_1^x \frac{\tan^{-1}(t)}{t} \, dt. \] 2. **Find \( f\left(\frac{1}{x}\right) \)**: We need to express \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = \int_1^{\frac{1}{x}} \frac{\tan^{-1}(t)}{t} \, dt. \] 3. **Change of Variables**: Let \( t = \frac{1}{u} \). Then \( dt = -\frac{1}{u^2} \, du \). - When \( t = 1 \), \( u = 1 \). - When \( t = \frac{1}{x} \), \( u = x \). Thus, we have: \[ f\left(\frac{1}{x}\right) = \int_1^{x} \frac{\tan^{-1}\left(\frac{1}{u}\right)}{\frac{1}{u}} \left(-\frac{1}{u^2}\right) \, du. \] This simplifies to: \[ f\left(\frac{1}{x}\right) = -\int_1^{x} \frac{\tan^{-1}\left(\frac{1}{u}\right)}{u} \, du. \] 4. **Using the Identity**: We know that: \[ \tan^{-1}\left(\frac{1}{u}\right) = \frac{\pi}{2} - \tan^{-1}(u). \] Thus, we can rewrite: \[ f\left(\frac{1}{x}\right) = -\int_1^{x} \frac{\frac{\pi}{2} - \tan^{-1}(u)}{u} \, du. \] This expands to: \[ f\left(\frac{1}{x}\right) = -\left(\frac{\pi}{2} \int_1^{x} \frac{1}{u} \, du - \int_1^{x} \frac{\tan^{-1}(u)}{u} \, du\right). \] 5. **Calculate the Integrals**: The integral \( \int_1^{x} \frac{1}{u} \, du = \log(x) \), so: \[ f\left(\frac{1}{x}\right) = -\left(\frac{\pi}{2} \log(x) - f(x)\right). \] 6. **Combine the Results**: Thus, we have: \[ f(x) - f\left(\frac{1}{x}\right) = f(x) + \left(\frac{\pi}{2} \log(x) - f(x)\right) = \frac{\pi}{2} \log(x). \] 7. **Substituting Values**: Now, substituting \( x = e^2 \): \[ f(e^2) - f\left(\frac{1}{e^2}\right) = \frac{\pi}{2} \log(e^2) = \frac{\pi}{2} \cdot 2 = \pi. \] ### Final Answer: \[ f(e^2) - f\left(\frac{1}{e^2}\right) = \pi. \]

To solve the problem, we need to find the value of \( f(e^2) - f\left(\frac{1}{e^2}\right) \) where \[ f(x) = \int_1^x \frac{\tan^{-1}(t)}{t} \, dt. \] ### Step-by-step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=int_1^x(tan^(-1)(t))/t dt \ AAx in R^+, then find the value of f(e^2)-f(1/(e^2))

Ifint_0^(npi)f(cos^2x)dx=kint_0^pif(cos^2x)dx ,t h e nfin dt h ev a l u ekdot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

For x >0,l e tf(x)=int_1^x((log)_e t)/(1+t)dtdot Find the function f(x)+f(1/x) and show that f(e)+f(1/e)=1/2dot

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

((lim)_(xvecoo)int0x(tan^(-1)t)^2dt)/(sqrt(x^2+1))h a st h ev a l u e zero (b) pi/4 (c) 1 (d) (pi^2)/4

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  6. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(7)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |