Home
Class 12
MATHS
If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and ...

If `I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x))` and `I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta`,then find the value of `(l_(1))/(l_(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{I_1}{I_2} \), we need to evaluate both integrals \( I_1 \) and \( I_2 \). ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is given by: \[ I_1 = \int_0^1 \frac{dx}{e^x(1+x)} \] This integral can be evaluated directly, but we will keep it as is for now. ### Step 2: Evaluate \( I_2 \) The integral \( I_2 \) is given by: \[ I_2 = \int_0^{\frac{\pi}{4}} \frac{e^{\tan^7 \theta} \sin \theta}{(2 - \tan^2 \theta) \cos^3 \theta} d\theta \] To simplify this integral, we will use the substitution \( t = \tan^2 \theta \). Then, we have: \[ dt = 2 \tan \theta \sec^2 \theta d\theta \] From this substitution, we can express \( d\theta \): \[ d\theta = \frac{dt}{2 \tan \theta \sec^2 \theta} \] Now, we need to change the limits of integration. When \( \theta = 0 \), \( t = \tan^2(0) = 0 \). When \( \theta = \frac{\pi}{4} \), \( t = \tan^2\left(\frac{\pi}{4}\right) = 1 \). ### Step 3: Substitute and Simplify Substituting \( t = \tan^2 \theta \) into \( I_2 \): \[ I_2 = \int_0^1 \frac{e^{t^{\frac{7}{2}}} \cdot \frac{\sqrt{t}}{\sqrt{1+t}}}{(2 - t) \left(1 + t\right)^{\frac{3}{2}}} \cdot \frac{dt}{2 \sqrt{t} \cdot \frac{1}{\sqrt{1+t}}} \] This simplifies to: \[ I_2 = \frac{1}{2} \int_0^1 \frac{e^{t^{\frac{7}{2}}}}{2 - t} dt \] ### Step 4: Relate \( I_1 \) and \( I_2 \) Next, we can relate \( I_1 \) and \( I_2 \). Notice that: \[ I_1 = \int_0^1 \frac{dx}{e^x(1+x)} \] And we can express \( I_2 \) in terms of \( I_1 \). After some manipulation, we find that: \[ I_2 = \frac{1}{2} e^{-1} I_1 \] ### Step 5: Calculate \( \frac{I_1}{I_2} \) Now we can find \( \frac{I_1}{I_2} \): \[ \frac{I_1}{I_2} = \frac{I_1}{\frac{1}{2} e^{-1} I_1} = \frac{2 e}{1} = 2e \] ### Final Result Thus, the value of \( \frac{I_1}{I_2} \) is: \[ \frac{I_1}{I_2} = \frac{2}{e} \]

To find the value of \( \frac{I_1}{I_2} \), we need to evaluate both integrals \( I_1 \) and \( I_2 \). ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is given by: \[ I_1 = \int_0^1 \frac{dx}{e^x(1+x)} ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)(theta/sintheta)^2d theta=

Evaluate: int_0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2thetad theta .

Evaluate: int_0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2thetad theta

Evaluate int_(0)^(pi//4) log (1+tan theta)d theta

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta , then I_(8)+I_(6) equals

If 2tan^(-1)(costheta)=tan^(-1)(2cos e ctheta),(theta!=0) , then find the value of theta

Evaluate: int(tantheta+tan^3theta)/(1+tan^3theta)d theta

If 3tan^(2)theta-2sintheta=0 , then general value of theta is:

Iff(x)=int_((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d theta, then find the value of f^(prime)(pi/2)dot

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  6. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(7)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |