Home
Class 12
MATHS
If I(n)=int(0)^(pi)x^(n)sinxdx, then fin...

If `I_(n)=int_(0)^(pi)x^(n)sinxdx`, then find the value of `I_(5)+20I_(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I_5 + 20I_3 \) where \( I_n = \int_0^{\pi} x^n \sin x \, dx \). ### Step-by-Step Solution: 1. **Define the integral**: \[ I_n = \int_0^{\pi} x^n \sin x \, dx \] 2. **Use integration by parts**: We will apply integration by parts where we let: - \( u = x^n \) and \( dv = \sin x \, dx \) - Then, \( du = n x^{n-1} \, dx \) and \( v = -\cos x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_n = \left[-x^n \cos x \right]_0^{\pi} + \int_0^{\pi} n x^{n-1} \cos x \, dx \] 3. **Evaluate the boundary term**: - At \( x = \pi \): \( -\pi^n \cos(\pi) = \pi^n \) - At \( x = 0 \): \( -0^n \cos(0) = 0 \) Thus: \[ I_n = \pi^n + n \int_0^{\pi} x^{n-1} \cos x \, dx \] 4. **Define the new integral**: Let \( J_n = \int_0^{\pi} x^{n-1} \cos x \, dx \). Then we have: \[ I_n = \pi^n + n J_{n-1} \] 5. **Apply integration by parts to \( J_n \)**: For \( J_n \), we apply integration by parts again: - Let \( u = x^{n-1} \) and \( dv = \cos x \, dx \) - Then \( du = (n-1)x^{n-2} \, dx \) and \( v = \sin x \) Thus: \[ J_n = \left[x^{n-1} \sin x \right]_0^{\pi} - \int_0^{\pi} (n-1)x^{n-2} \sin x \, dx \] 6. **Evaluate the boundary term for \( J_n \)**: - At \( x = \pi \): \( \pi^{n-1} \sin(\pi) = 0 \) - At \( x = 0 \): \( 0^{n-1} \sin(0) = 0 \) Thus: \[ J_n = -(n-1) I_{n-2} \] 7. **Substituting back**: Now substituting \( J_{n-1} \) into the equation for \( I_n \): \[ I_n = \pi^n + n \left[-(n-1) I_{n-2}\right] \] Simplifying gives: \[ I_n = \pi^n - n(n-1) I_{n-2} \] 8. **Finding \( I_5 \) and \( I_3 \)**: - For \( n = 5 \): \[ I_5 = \pi^5 - 5 \cdot 4 I_3 \] - For \( n = 3 \): \[ I_3 = \pi^3 - 3 \cdot 2 I_1 \] 9. **Finding \( I_1 \)**: \[ I_1 = \int_0^{\pi} x \sin x \, dx \] Using integration by parts: \[ I_1 = \left[-x \cos x \right]_0^{\pi} + \int_0^{\pi} \cos x \, dx \] Evaluating gives: \[ I_1 = \pi + 0 = \pi \] 10. **Substituting \( I_1 \) back into \( I_3 \)**: \[ I_3 = \pi^3 - 6\pi = \pi^3 - 6\pi \] 11. **Substituting \( I_3 \) back into \( I_5 \)**: \[ I_5 = \pi^5 - 20(\pi^3 - 6\pi) = \pi^5 - 20\pi^3 + 120\pi \] 12. **Calculate \( I_5 + 20I_3 \)**: \[ I_5 + 20I_3 = \left(\pi^5 - 20\pi^3 + 120\pi\right) + 20\left(\pi^3 - 6\pi\right) \] Simplifying gives: \[ I_5 + 20I_3 = \pi^5 - 20\pi^3 + 120\pi + 20\pi^3 - 120\pi = \pi^5 \] ### Final Answer: \[ I_5 + 20I_3 = \pi^5 \]

To solve the problem, we need to evaluate the expression \( I_5 + 20I_3 \) where \( I_n = \int_0^{\pi} x^n \sin x \, dx \). ### Step-by-Step Solution: 1. **Define the integral**: \[ I_n = \int_0^{\pi} x^n \sin x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

Find the value of (i) sin. (5pi)/(3)

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  6. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(7)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |