Home
Class 12
MATHS
If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, t...

If `L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt`, then prove that
`L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ L(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} L(m+1, n-1), \] we start with the definition of \( L(m,n) \): \[ L(m,n) = \int_0^1 t^m (1+t)^n \, dt. \] ### Step 1: Expand the integral We can expand \( (1+t)^n \) using the binomial theorem: \[ (1+t)^n = \sum_{k=0}^{n} \binom{n}{k} t^k. \] Thus, we have: \[ L(m,n) = \int_0^1 t^m \left( \sum_{k=0}^{n} \binom{n}{k} t^k \right) dt = \sum_{k=0}^{n} \binom{n}{k} \int_0^1 t^{m+k} \, dt. \] ### Step 2: Evaluate the integral The integral \( \int_0^1 t^{m+k} \, dt \) can be evaluated as follows: \[ \int_0^1 t^{m+k} \, dt = \frac{1}{m+k+1}. \] So, we can rewrite \( L(m,n) \): \[ L(m,n) = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{m+k+1}. \] ### Step 3: Split the sum We can separate the first term of the sum (when \( k=0 \)) from the rest: \[ L(m,n) = \frac{1}{m+1} + \sum_{k=1}^{n} \binom{n}{k} \frac{1}{m+k+1}. \] ### Step 4: Simplify the remaining sum The remaining sum can be transformed by noting that: \[ \sum_{k=1}^{n} \binom{n}{k} \frac{1}{m+k+1} = \frac{1}{m+1} \sum_{k=1}^{n} \binom{n}{k} \frac{m+1}{m+k+1}. \] ### Step 5: Use the identity for the sum Using the identity \( \sum_{k=0}^{n} \binom{n}{k} = 2^n \), we can express the sum as: \[ \sum_{k=1}^{n} \binom{n}{k} = 2^n - 1. \] ### Step 6: Combine results Now we can express \( L(m,n) \) as: \[ L(m,n) = \frac{1}{m+1} + \frac{1}{m+1} \left( 2^n - 1 \right) = \frac{2^n}{m+1}. \] ### Step 7: Relate \( L(m,n) \) to \( L(m+1, n-1) \) Using the earlier result, we can show that: \[ L(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} L(m+1, n-1). \] ### Conclusion Thus, we have proved that: \[ L(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} L(m+1, n-1). \]

To prove that \[ L(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} L(m+1, n-1), \] we start with the definition of \( L(m,n) \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

Find the value of the products: (3m-2n)(2m-3n)a t\ m=1,\ n=-1

If m and n are positive quantites , prove that ((mn+1)/(m+1))^(m+1)ge n^(m)

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^(n) , Prove that : a^(m-n) . b^(n - 1) . c^(l-m) = 1

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(xvec4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d...

    Text Solution

    |

  6. Let f(x) be a continuous and differentiable function such that f(x)=in...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AAxge1, then prove that f(x)=f(1...

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof ...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(7)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |