Home
Class 12
MATHS
If L=lim(nto oo) (n^(3)(e^(1//n)+e^(2//n...

If `L=lim_(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(m)+….+n^(2m)))` is non zero finite real, then

A

`L=3(e-1)`

B

`L=2(e-1)`

C

`m=1//3`

D

`m=1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit \[ L = \lim_{n \to \infty} \frac{n^3 \left( e^{1/n} + e^{2/n} + \ldots + e^{n/n} \right)}{(n+1)^m \left( 1^m + 4^m + \ldots + n^{2m} \right)} \] ### Step 1: Rewrite the numerator The numerator can be expressed as a summation: \[ e^{1/n} + e^{2/n} + \ldots + e^{n/n} = \sum_{r=1}^{n} e^{r/n} \] As \( n \to \infty \), this summation can be approximated by the integral: \[ \sum_{r=1}^{n} e^{r/n} \approx n \int_0^1 e^x \, dx \] ### Step 2: Evaluate the integral Now we compute the integral: \[ \int_0^1 e^x \, dx = [e^x]_0^1 = e - 1 \] Thus, we can approximate the numerator as: \[ \sum_{r=1}^{n} e^{r/n} \approx n(e - 1) \] ### Step 3: Rewrite the denominator The denominator can be rewritten as: \[ 1^m + 4^m + \ldots + n^{2m} = \sum_{r=1}^{n} (r^2)^m = \sum_{r=1}^{n} r^{2m} \] Using the formula for the sum of powers, we have: \[ \sum_{r=1}^{n} r^{2m} \approx \frac{n^{2m+1}}{2m+1} \] ### Step 4: Rewrite the limit Substituting the approximations into the limit, we have: \[ L = \lim_{n \to \infty} \frac{n^3 \cdot n(e - 1)}{(n+1)^m \cdot \frac{n^{2m+1}}{2m+1}} \] ### Step 5: Simplify the expression This simplifies to: \[ L = \lim_{n \to \infty} \frac{n^4(e - 1)(2m + 1)}{(n + 1)^m n^{2m + 1}} \] As \( n \to \infty \), \((n + 1)^m \approx n^m\), so we can write: \[ L = \lim_{n \to \infty} \frac{n^4(e - 1)(2m + 1)}{n^m n^{2m + 1}} = \lim_{n \to \infty} \frac{(e - 1)(2m + 1)}{n^{m - 4}} \] ### Step 6: Determine conditions for non-zero finite limit For \(L\) to be non-zero and finite, we require: \[ m - 4 = 0 \implies m = 4 \] ### Conclusion Thus, the value of \(m\) such that \(L\) is a non-zero finite real number is: \[ \boxed{4} \]

To solve the problem, we need to evaluate the limit \[ L = \lim_{n \to \infty} \frac{n^3 \left( e^{1/n} + e^{2/n} + \ldots + e^{n/n} \right)}{(n+1)^m \left( 1^m + 4^m + \ldots + n^{2m} \right)} \] ### Step 1: Rewrite the numerator The numerator can be expressed as a summation: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

lim_(x->oo)(1-x+x.e^(1/n))^n

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If f(x) is integrable over [1,2] then int(1)^(2)f(x)dx is equal to (a)...

    Text Solution

    |

  2. If L=lim(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(...

    Text Solution

    |

  3. Let p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(120)) and q=1/(sqrt(2))+1/...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The value of int0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dx is

    Text Solution

    |

  6. Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, where xgt0, Then

    Text Solution

    |

  7. If inta^b|sinx|dx=8 and int0^(a+b)|cosx| dx=9 , then find the val...

    Text Solution

    |

  8. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  9. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  10. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  11. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  12. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  13. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  14. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  15. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  16. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  17. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  18. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  19. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  20. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |