Home
Class 12
MATHS
Let p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(s...

Let `p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(120))` and `q=1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(121))` then

A

`pgt20`

B

`qlt20`

C

`p+qlt40`

D

`p+qgt40`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( p \) and \( q \) and use the properties of definite integrals to establish a relationship between them. ### Step 1: Define \( p \) and \( q \) We have: \[ p = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{120}} \] \[ q = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{121}} \] ### Step 2: Express \( p \) in terms of \( q \) Notice that: \[ p = 1 + q \] ### Step 3: Set up the definite integral We know that: \[ \int_1^{121} \frac{1}{\sqrt{x}} \, dx \] Calculating this integral: \[ \int \frac{1}{\sqrt{x}} \, dx = 2\sqrt{x} \] Thus, \[ \int_1^{121} \frac{1}{\sqrt{x}} \, dx = 2\sqrt{121} - 2\sqrt{1} = 2 \cdot 11 - 2 \cdot 1 = 22 - 2 = 20 \] ### Step 4: Establish inequalities Since \( \frac{1}{\sqrt{x}} \) is a decreasing function, we can use the properties of integrals to establish: \[ \int_1^{121} \frac{1}{\sqrt{x}} \, dx < p < \int_1^{120} \frac{1}{\sqrt{x}} \, dx \] and \[ \int_1^{120} \frac{1}{\sqrt{x}} \, dx < q < \int_1^{121} \frac{1}{\sqrt{x}} \, dx \] ### Step 5: Evaluate the integrals Calculating \( \int_1^{120} \frac{1}{\sqrt{x}} \, dx \): \[ \int_1^{120} \frac{1}{\sqrt{x}} \, dx = 2\sqrt{120} - 2\sqrt{1} = 2\sqrt{120} - 2 \] ### Step 6: Compare \( p \) and \( q \) From the inequalities, we have: \[ 20 < p < 2\sqrt{120} - 2 \] and \[ 20 < q < 20 \] ### Step 7: Combine inequalities From \( p = 1 + q \), we can substitute: \[ p + q > 40 \] ### Conclusion Thus, we conclude that: \[ p + q > 40 \] ### Final Answer The answer to the question is \( p + q > 40 \). ---

To solve the problem, we need to evaluate the sums \( p \) and \( q \) and use the properties of definite integrals to establish a relationship between them. ### Step 1: Define \( p \) and \( q \) We have: \[ p = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{120}} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

(sqrt(3)-1/(sqrt(3)))^2 is equal to

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

Which term of the G.P.: sqrt(2),1/(sqrt(2)),1/(2sqrt(2)),1/(4sqrt(2)), i s1/(512sqrt(2))?

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If f(x) is integrable over [1,2] then int(1)^(2)f(x)dx is equal to (a)...

    Text Solution

    |

  2. If L=lim(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(...

    Text Solution

    |

  3. Let p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(120)) and q=1/(sqrt(2))+1/...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The value of int0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dx is

    Text Solution

    |

  6. Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, where xgt0, Then

    Text Solution

    |

  7. If inta^b|sinx|dx=8 and int0^(a+b)|cosx| dx=9 , then find the val...

    Text Solution

    |

  8. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  9. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  10. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  11. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  12. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  13. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  14. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  15. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  16. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  17. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  18. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  19. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  20. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |