Home
Class 12
MATHS
If inta^b|sinx|dx=8 and int0^(a+b)|...

If `int_a^b|sinx|dx=8` and `int_0^(a+b)|cosx| dx=9` , then find the value of `int_a^b xsinx dx`.

A

`a+b=(9pi)/2`

B

`|a=b|=4pi`

C

`a/b=15`

D

`int_(a)^(b)sec^(2)xdx=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given integrals and properties of definite integrals. ### Step 1: Understand the given integrals We have two integrals: 1. \(\int_a^b |\sin x| \, dx = 8\) 2. \(\int_0^{a+b} |\cos x| \, dx = 9\) ### Step 2: Analyze the first integral The integral \(\int |\sin x| \, dx\) over one complete period (from \(0\) to \(\pi\)) is equal to \(2\). This is because: \[ \int_0^{\pi} |\sin x| \, dx = \int_0^{\pi} \sin x \, dx = [-\cos x]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2 \] Thus, for the interval \([a, b]\), we can express the length of the interval in terms of the integral value: \[ b - a = 4 \quad \text{(since } 2 \times 4 = 8\text{)} \] ### Step 3: Analyze the second integral For the second integral \(\int_0^{a+b} |\cos x| \, dx\), the integral over one complete period (from \(0\) to \(2\pi\)) is equal to \(4\): \[ \int_0^{2\pi} |\cos x| \, dx = 4 \] Thus, for the interval \([0, a+b]\), we can express: \[ \frac{a+b}{\pi} \times 4 = 9 \implies a+b = \frac{9\pi}{4} \] ### Step 4: Solve the system of equations Now we have two equations: 1. \(b - a = 4\) 2. \(a + b = \frac{9\pi}{4}\) Let's solve these equations: From the first equation, we can express \(b\) in terms of \(a\): \[ b = a + 4 \] Substituting this into the second equation: \[ a + (a + 4) = \frac{9\pi}{4} \] \[ 2a + 4 = \frac{9\pi}{4} \] \[ 2a = \frac{9\pi}{4} - 4 = \frac{9\pi - 16}{4} \] \[ a = \frac{9\pi - 16}{8} \] Now substituting \(a\) back to find \(b\): \[ b = \frac{9\pi - 16}{8} + 4 = \frac{9\pi - 16 + 32}{8} = \frac{9\pi + 16}{8} \] ### Step 5: Calculate the integral \(\int_a^b x \sin x \, dx\) Using integration by parts, let: - \(u = x\) and \(dv = \sin x \, dx\) - Then, \(du = dx\) and \(v = -\cos x\) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x \] ### Step 6: Evaluate the definite integral from \(a\) to \(b\) Now we need to evaluate: \[ \left[-x \cos x + \sin x\right]_a^b = \left[-b \cos b + \sin b\right] - \left[-a \cos a + \sin a\right] \] ### Step 7: Substitute the values of \(a\) and \(b\) Substituting \(a = \frac{9\pi - 16}{8}\) and \(b = \frac{9\pi + 16}{8}\) into the expression will yield the final result. ### Final Result After substituting and simplifying, we will arrive at the final value of the integral \(\int_a^b x \sin x \, dx\).

To solve the problem step by step, we will use the given integrals and properties of definite integrals. ### Step 1: Understand the given integrals We have two integrals: 1. \(\int_a^b |\sin x| \, dx = 8\) 2. \(\int_0^{a+b} |\cos x| \, dx = 9\) ### Step 2: Analyze the first integral ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(a)^(b)|sin|dx=8 & int_(0)^(a+b)|cosx|dx=9 ten

If int _(a )^(b) |sin x |dx =8 and int _(0)^(a+b) |cos x| dx=9 then the value of (1)/(sqrt2pi) |int _(a)^(b) x sin x dx | is _____ .

int cosx . sinx dx

Evaluate: int_a^b x^3dx

Evaluate: int_a^b cos x dx

Ifint_a^b|sinx|dx=8a n dint_0^(a+b)|cosx|dx=9,t h e n (a) a+b=(9pi)/2 (b) |a-b|=4pi (c) a/b=15 (d) int_a^bsec^2x dx=0

Evaluate: inte^x\ (cosx-sinx)\ dx

Evaluate: int(sinx+cosx)\ dx

Evaluate: int1/(cosx-sinx)\ dx

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. The value of int0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dx is

    Text Solution

    |

  2. Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, where xgt0, Then

    Text Solution

    |

  3. If inta^b|sinx|dx=8 and int0^(a+b)|cosx| dx=9 , then find the val...

    Text Solution

    |

  4. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  5. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  6. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  7. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  8. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  9. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  10. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  11. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  12. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  13. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  14. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  15. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  16. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  17. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  18. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  19. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  20. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |