Home
Class 12
MATHS
IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b...

`IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N ,` Then (a) `A_(n+1)=A_n` (b) `B_(n+1)=B_n` (c) `A_(n+1)-A_n=B_(n+1)` (d) `B_(n+1)-B_n=A_(n+1)`

A

`A_(n+1)=A_(n)`

B

`B_(n+1)=B_(n)`

C

`A_(n+1)-A_(n)=B_(n+1)`

D

`B_(n+1)-B_(n)=A_(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the integrals \( A_n \) and \( B_n \) defined as follows: \[ A_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n-1)x)}{\sin x} \, dx \] \[ B_n = \int_0^{\frac{\pi}{2}} \left(\frac{\sin(nx)}{\sin x}\right)^2 \, dx \] We will derive the relationships between \( A_{n+1} \), \( A_n \), \( B_{n+1} \), and \( B_n \). ### Step 1: Finding \( A_{n+1} \) We start by calculating \( A_{n+1} \): \[ A_{n+1} = \int_0^{\frac{\pi}{2}} \frac{\sin((2(n+1)-1)x)}{\sin x} \, dx = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{\sin x} \, dx \] ### Step 2: Expressing \( A_{n+1} - A_n \) Now, we find \( A_{n+1} - A_n \): \[ A_{n+1} - A_n = \int_0^{\frac{\pi}{2}} \left( \frac{\sin((2n+1)x)}{\sin x} - \frac{\sin((2n-1)x)}{\sin x} \right) \, dx \] This can be simplified as: \[ = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x) - \sin((2n-1)x)}{\sin x} \, dx \] Using the sine subtraction formula, we have: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Setting \( A = (2n+1)x \) and \( B = (2n-1)x \): \[ A+B = (4n)x \quad \text{and} \quad A-B = 2x \] Thus, \[ \sin((2n+1)x) - \sin((2n-1)x) = 2 \cos(2nx) \sin(x) \] Substituting this back, we get: \[ A_{n+1} - A_n = \int_0^{\frac{\pi}{2}} \frac{2 \cos(2nx) \sin x}{\sin x} \, dx = 2 \int_0^{\frac{\pi}{2}} \cos(2nx) \, dx \] ### Step 3: Evaluating the Integral The integral \( \int_0^{\frac{\pi}{2}} \cos(2nx) \, dx \) can be computed as follows: \[ \int_0^{\frac{\pi}{2}} \cos(2nx) \, dx = \left[ \frac{\sin(2nx)}{2n} \right]_0^{\frac{\pi}{2}} = \frac{\sin(n\pi)}{2n} - 0 = 0 \] Thus, \[ A_{n+1} - A_n = 2 \cdot 0 = 0 \] This implies: \[ A_{n+1} = A_n \] ### Step 4: Finding \( B_{n+1} \) Next, we compute \( B_{n+1} \): \[ B_{n+1} = \int_0^{\frac{\pi}{2}} \left(\frac{\sin((n+1)x)}{\sin x}\right)^2 \, dx \] ### Step 5: Expressing \( B_{n+1} - B_n \) We find \( B_{n+1} - B_n \): \[ B_{n+1} - B_n = \int_0^{\frac{\pi}{2}} \left( \left(\frac{\sin((n+1)x)}{\sin x}\right)^2 - \left(\frac{\sin(nx)}{\sin x}\right)^2 \right) \, dx \] Using the identity \( a^2 - b^2 = (a-b)(a+b) \): \[ = \int_0^{\frac{\pi}{2}} \left( \frac{\sin((n+1)x) - \sin(nx)}{\sin x} \right) \left( \frac{\sin((n+1)x) + \sin(nx)}{\sin x} \right) \, dx \] Using the sine subtraction formula again: \[ \sin((n+1)x) - \sin(nx) = 2 \cos\left(\frac{(2n+1)x}{2}\right) \sin\left(\frac{x}{2}\right) \] ### Conclusion From the above steps, we have derived: 1. \( A_{n+1} = A_n \) (Option a is correct) 2. To find \( B_{n+1} = B_n \) or \( B_{n+1} - B_n = A_{n+1} \) would require further evaluation, but we can conclude that \( A_{n+1} - A_n = 0 \).

To solve the given problem, we need to analyze the integrals \( A_n \) and \( B_n \) defined as follows: \[ A_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n-1)x)}{\sin x} \, dx \] \[ B_n = \int_0^{\frac{\pi}{2}} \left(\frac{\sin(nx)}{\sin x}\right)^2 \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

For U_n=int_0^1x^n(2-x)^n dx ; V_n=int_0^1x^n(1-x)^ndxn in N , which of the following statement(s) is/are true? U_n=2^n V_n (b) U_n=2^(-n)V_n U_n=2^(2n)V_n (d) V_n=2^(-2n)U_n

If I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1) , then I_n+I_(n+2)= (A) 1/(n-1) (B) 1/(n+1) (C) -1/(n+1) (D) 1/n-1

If sum_(r=0)^(n){a_(r)(x-alpha+2)^(r)-b_(r)(alpha-x-1)^(r)}=0 , then (a) b_(n) = 1+a_(n) (b) b_(n) = (-1)^(n)xxa_(n) (c) b_(n) = (-1)^(n-1) xxa_(n) (d) b_(n) + 1 = a_(n)

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

If sum_(r=1)^n r^4= a_n then sum_(r=1)^n(2r-1)^4)= (A) a_(2n)+a_n (B) a_(2n)-a_n (C) a_(2n)-16a_n (D) a_(2n)+16b_n

If n!=1, int_0^(pi/4) (tan^nx+tan^(n-2)x)d(x-[x])= (A) 1/(n-1) (B) 1/(n+1) (C) 1/n (D) 2/(n-1)

If alphaa n dbeta are the rootsof he equations x^2-a x+b=0a n dA_n=alpha^n+beta^n , then which of the following is true? a. A_(n+1)=a A_n+b A_(n-1) b. A_(n+1)=b A_(n-1)+a A_n c. A_(n+1)=a A_n-b A_(n-1) d. A_(n+1)=b A_(n-1)-a A_n

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If inta^b|sinx|dx=8 and int0^(a+b)|cosx| dx=9 , then find the val...

    Text Solution

    |

  2. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  5. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  6. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  7. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  8. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  9. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  10. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  11. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  12. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  13. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  14. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  15. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  16. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  17. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  18. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  19. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  20. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |