Home
Class 12
MATHS
The value of int0^1e^(x^2-x)dx is (a) <...

The value of `int_0^1e^(x^2-x)`dx` is (a) `<1` (b) `>1` (c) `> `e^(-1/4)` (d)` < e^(-1/4)`

A

`lt1`

B

`gt1`

C

`gte^(-1/4)`

D

`lte^(-1/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 e^{x^2 - x} \, dx \) and determine its value in relation to the given options, we can follow these steps: ### Step 1: Analyze the function \( x^2 - x \) We start by analyzing the expression \( x^2 - x \) over the interval \( [0, 1] \). - At \( x = 0 \): \[ x^2 - x = 0^2 - 0 = 0 \] - At \( x = 1 \): \[ x^2 - x = 1^2 - 1 = 0 \] - To find the minimum value, we can differentiate: \[ f(x) = x^2 - x \] \[ f'(x) = 2x - 1 \] Setting \( f'(x) = 0 \) gives \( x = \frac{1}{2} \). - Evaluating at \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{4} - \frac{2}{4} = -\frac{1}{4} \] Thus, the minimum value of \( x^2 - x \) on the interval \( [0, 1] \) is \( -\frac{1}{4} \) and the maximum value is \( 0 \). ### Step 2: Determine the bounds for \( e^{x^2 - x} \) Since \( x^2 - x \) varies from \( -\frac{1}{4} \) to \( 0 \), we can find the corresponding values of \( e^{x^2 - x} \): - At the minimum \( -\frac{1}{4} \): \[ e^{-\frac{1}{4}} \] - At the maximum \( 0 \): \[ e^0 = 1 \] Thus, \( e^{x^2 - x} \) varies from \( e^{-\frac{1}{4}} \) to \( 1 \). ### Step 3: Set up the integral Now we can set up the integral: \[ \int_0^1 e^{x^2 - x} \, dx \] Using the bounds we found: \[ e^{-\frac{1}{4}} \leq e^{x^2 - x} \leq 1 \] ### Step 4: Integrate and apply the bounds Integrating over the interval \( [0, 1] \): \[ \int_0^1 e^{-\frac{1}{4}} \, dx \leq \int_0^1 e^{x^2 - x} \, dx \leq \int_0^1 1 \, dx \] Calculating the integrals: - The left side: \[ \int_0^1 e^{-\frac{1}{4}} \, dx = e^{-\frac{1}{4}} \cdot (1 - 0) = e^{-\frac{1}{4}} \] - The right side: \[ \int_0^1 1 \, dx = 1 \] Thus, we have: \[ e^{-\frac{1}{4}} \leq \int_0^1 e^{x^2 - x} \, dx < 1 \] ### Conclusion From the inequalities we derived: - The integral \( \int_0^1 e^{x^2 - x} \, dx \) is greater than \( e^{-\frac{1}{4}} \) and less than \( 1 \). Therefore, the correct options are: - (c) \( > e^{-\frac{1}{4}} \) - (a) \( < 1 \)

To solve the integral \( \int_0^1 e^{x^2 - x} \, dx \) and determine its value in relation to the given options, we can follow these steps: ### Step 1: Analyze the function \( x^2 - x \) We start by analyzing the expression \( x^2 - x \) over the interval \( [0, 1] \). - At \( x = 0 \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^1 e^(2-3x)dx

int_0^1 x^2 e^(2x) dx

int_0^1 e^x dx

Evaluate: int_0^1x\ e^x dx

The value of int_0^1 e^(x^2)dx is (A) less than e (B) greater than 1 (C) less than e but greater than 1 (D) all of these

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Write a value of int1/(1+2\ e^x)\ dx

int_0^1(e^x dx)/(1+e^x)

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |