Home
Class 12
MATHS
If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10...

If `int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10`, then

A

`b=22, a=2`

B

`b=15,a=-5`

C

`b=10, a=-10`

D

`b=10, a=-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given integral: \[ I = \int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} \, dx = 10 \] ### Step 1: Use the property of definite integrals We know from the properties of definite integrals that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] This means we can express the integral in a different way. Let's denote: \[ J = \int_{a}^{b} \frac{f(a + b - x)}{f(a + b - x) + f(x)} \, dx \] ### Step 2: Rewrite the integral Now, we can rewrite \(J\): \[ J = \int_{a}^{b} \frac{f(a + b - x)}{f(a + b - x) + f(x)} \, dx \] ### Step 3: Add the two integrals Now, we add \(I\) and \(J\): \[ I + J = \int_{a}^{b} \left( \frac{f(x)}{f(x) + f(a + b - x)} + \frac{f(a + b - x)}{f(a + b - x) + f(x)} \right) dx \] ### Step 4: Simplify the expression Notice that: \[ \frac{f(x)}{f(x) + f(a + b - x)} + \frac{f(a + b - x)}{f(a + b - x) + f(x)} = 1 \] Thus, we have: \[ I + J = \int_{a}^{b} 1 \, dx = b - a \] ### Step 5: Relate \(I\) and \(J\) Since \(I = J\) (because of the symmetry in the definitions of \(I\) and \(J\)), we can write: \[ 2I = b - a \] ### Step 6: Solve for \(b - a\) From the given information, we know that \(I = 10\): \[ 2 \cdot 10 = b - a \] Thus, \[ b - a = 20 \] ### Conclusion The difference between \(b\) and \(a\) is 20. ---

To solve the problem, we start with the given integral: \[ I = \int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} \, dx = 10 \] ### Step 1: Use the property of definite integrals ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Prove that: int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2

Evaluate each of the following integral: int_a^b(f(x))/(f(x)+f(a+b-x))dx

Let f(x) be a function satisying f(x) = f((100)/(x)) AA x ge 0 . If int_(1)^(10) (f(x))/(x) dx = 5 then find the value of int_(1)^(100)(f(x))/(x) dx .

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

Let int_a^b (f(a+b-x))/(f(a+b-x)+f(a+b-(a+b-x)))dx=4 , then (A) a=-1,b=7 (B) a=0,b=8 (C) a=-10,b=2 (D) a=10,b=18

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

The value of int_(-10)^(10)[{f(f(x)}+{f(f((1)/(x))}]dx , where f(x)=(1-x)/(1+x)

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |