Home
Class 12
MATHS
If f(x)=int(0)^(x)|t-1|dt, where 0lexle2...

If `f(x)=int_(0)^(x)|t-1|dt`, where `0lexle2`, then

A

range of `f(x)` is `[0,1]`

B

`f(x)` is differentiable at `x=1`

C

`f(x)=cos^(-1)x` has two real roots

D

`f'(1//2)=1//2`

Text Solution

Verified by Experts

The correct Answer is:
B

Given that `f(x)=int_(0)^(x)|t-1|dt`
`=int_(0)^(x)(1-t)dt, 0lexle1`
`=x-(x^(2))/2`
Also `f(x)=int_(0)^(1)(1-t)dt+int_(1)^(x)(t-1)dt`, where `1 le x le 2`
`=1/2+(x^(2))/2-x+1/2=(x^(2))/2-x+1`
Thus `f(x)={(x-(x^(2))/2,0lexle1),((x^(2))/2-+1,lt x le2):}`
`:.f'(x)={(1-x,0lexlt1),(x-1,1ltxlt2):}`
Thus `f(x) `is continuous as well as differentiable at `x=1`
Also, `f(x)=cos^(-1)x` has one real root. Draw the graph and verify.
For range of `f(x)`:
`f(x)=int_(0)^(x)|t-1|dt` is the value of bounded by the curve `y=|t-1|` and `x` -axis betwen the limits `t=0` and `t=x`.
Obviously minimum area is obtained when `t=0` and `t=x` coincide or `x=0`.
Maximum value of area occurs when `t=2`.
Hence `f(2)=` ara of shaded region `=1`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfying the equation f(x)+f(1/x)=2 is

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If int_(0)^(x){t}dt=int_(0)^({x})t dt ("where" x gt0 neZ and and {*} represents fractional part function), then

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |