Home
Class 12
MATHS
If f(x)=int0^x("cos"(sint)+"cos"(cost)dt...

If `f(x)=int_0^x("cos"(sint)+"cos"(cost)dt`, then `f(x+pi)` is (a) `f(x)+f(pi)` (b) `f(x)+2(pi)` (c) `f(x)+f(pi/2)` (d) `f(x)+2f(pi/2)`

A

`f(x)+f(pi)`

B

`f(x)+2f(pi)`

C

`f(x)+f((pi)/2)`

D

`f(x)+2f((pi)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f(x + \pi) \) where \[ f(x) = \int_0^x \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] ### Step 1: Write down the expression for \( f(x + \pi) \) We start by substituting \( x + \pi \) into the function \( f \): \[ f(x + \pi) = \int_0^{x + \pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] ### Step 2: Break the integral into two parts We can split the integral into two parts: \[ f(x + \pi) = \int_0^{x} \left( \cos(\sin t) + \cos(\cos t) \right) dt + \int_x^{x + \pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] The first part is simply \( f(x) \): \[ f(x + \pi) = f(x) + \int_x^{x + \pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] ### Step 3: Evaluate the second integral Now we need to evaluate the second integral: \[ \int_x^{x + \pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] Using the periodic properties of the integrand, we can analyze this integral. The functions \( \cos(\sin t) \) and \( \cos(\cos t) \) are periodic with period \( 2\pi \). Therefore, we can rewrite the integral: \[ \int_x^{x + \pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt = \int_0^{\pi} \left( \cos(\sin u) + \cos(\cos u) \right) du, \] where \( u = t - x \) and the limits change accordingly. ### Step 4: Recognize the integral as a constant Let’s denote: \[ C = \int_0^{\pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] Thus, we have: \[ f(x + \pi) = f(x) + C. \] ### Step 5: Evaluate \( C \) Next, we need to evaluate \( C \): \[ C = \int_0^{\pi} \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] This integral evaluates to a constant value, which we denote as \( f(\pi) \). ### Final Step: Combine results Now we can express \( f(x + \pi) \): \[ f(x + \pi) = f(x) + f(\pi). \] Thus, the answer is: \[ f(x + \pi) = f(x) + f(\pi). \] ### Conclusion The correct answer is: (a) \( f(x) + f(\pi) \).

To solve the problem, we need to evaluate \( f(x + \pi) \) where \[ f(x) = \int_0^x \left( \cos(\sin t) + \cos(\cos t) \right) dt. \] ### Step 1: Write down the expression for \( f(x + \pi) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_0^x e^(cost)/(e^(cost)+e^-(cost))dt , then 2f(pi)= (A) 0 (B) pi (C) -pi (D) none of these

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

Let f(x)=int_0^x (cost)/tdt Then at x=(2n+1)pi/2 f(x) has

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |