Home
Class 12
MATHS
If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt...

If `I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1` is an integer ), then (a) `I_(n)+I_(n-2)=1/(n+1)` (b) `I_(n)+I_(n-2)=1/(n-1)` (c) `I_(2)+I_(4),I_(6),…….` are in H.P. (d) `1/(2(n+1))ltI_(n)lt1/(2(n-1))`

A

`I_(n)+I_(n-2)=1/(n+1)`

B

`I_(n)+I_(n-2)=1/(n-1)`

C

`I_(2)+I_(4),I_(6),…….` are in H.P.

D

`1/(2(n+1))ltI_(n)lt1/(2(n-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) for \( n > 1 \) and determine which of the given options is correct. ### Step-by-Step Solution: 1. **Start with the integral definition**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] 2. **Use the identity for \(\tan^n x\)**: We can express \(\tan^n x\) in terms of \(\tan^{n-2} x\): \[ \tan^n x = \tan^{n-2} x \cdot \tan^2 x \] Thus, we can rewrite the integral as: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \tan^2 x \, dx \] 3. **Substitute \(\tan^2 x\)**: We know that \(\tan^2 x = \sec^2 x - 1\). Therefore, we can split the integral: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \] This gives us: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] 4. **Change of variable**: Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{4} \) which corresponds to \( t = 0 \) to \( t = 1 \): \[ I_n = \int_0^1 t^{n-2} \, dt - I_{n-2} \] 5. **Evaluate the integral**: The integral \( \int_0^1 t^{n-2} \, dt \) can be evaluated as: \[ \int_0^1 t^{n-2} \, dt = \frac{1}{n-1} \] Therefore, substituting back, we have: \[ I_n = \frac{1}{n-1} - I_{n-2} \] 6. **Rearranging gives us the desired relation**: Rearranging the above equation gives: \[ I_n + I_{n-2} = \frac{1}{n-1} \] ### Conclusion: Thus, the correct option is: (b) \( I_n + I_{n-2} = \frac{1}{n-1} \)

To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) for \( n > 1 \) and determine which of the given options is correct. ### Step-by-Step Solution: 1. **Start with the integral definition**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1) , then I_n+I_(n+2)= (A) 1/(n-1) (B) 1/(n+1) (C) -1/(n+1) (D) 1/n-1

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |