Home
Class 12
MATHS
IfIn=int0^1(dx)/((1+x^2)^n),w h e r en i...

`IfI_n=int_0^1(dx)/((1+x^2)^n),w h e r en in N ,` which of the following statements hold good? (a) `2nI_(n+1)=2^(-n)+(2n-1)I_n`
(b) `I_2=pi/8+1/4` (c) `I_2=pi/8-1/4` (d) `I_3=(3pi)/(32)+1/4`

A

`2nI_(n+1)=2^(-n)+(2n-1)I_(n)`

B

`I_(2)=(pi)/8+1/4`

C

`I_(2)=(pi)/8-1/4`

D

`I_(3)=(3pi)/32+1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_0^1 \frac{dx}{(1+x^2)^n} \) and analyze the given statements. ### Step 1: Rewrite the Integral We start with the integral: \[ I_n = \int_0^1 (1 + x^2)^{-n} \, dx \] ### Step 2: Apply Integration by Parts We will use integration by parts. Let: - \( u = (1 + x^2)^{-n} \) (first function) - \( dv = dx \) (second function) Then, we differentiate \( u \) and integrate \( dv \): - \( du = -2nx(1 + x^2)^{-n-1} \, dx \) - \( v = x \) Using integration by parts: \[ I_n = \left[ u v \right]_0^1 - \int_0^1 v \, du \] Substituting the values: \[ I_n = \left[ (1 + x^2)^{-n} \cdot x \right]_0^1 - \int_0^1 x \left(-2nx(1 + x^2)^{-n-1}\right) \, dx \] ### Step 3: Evaluate the Boundary Terms Evaluating the boundary terms: \[ \left[ (1 + x^2)^{-n} \cdot x \right]_0^1 = (1 + 1^2)^{-n} \cdot 1 - (1 + 0^2)^{-n} \cdot 0 = \frac{1}{2^n} - 0 = \frac{1}{2^n} \] ### Step 4: Simplify the Integral Now we simplify the integral: \[ I_n = \frac{1}{2^n} + 2n \int_0^1 \frac{x^2}{(1 + x^2)^{n+1}} \, dx \] Let \( I_{n+1} = \int_0^1 \frac{dx}{(1 + x^2)^{n+1}} \): \[ I_n = \frac{1}{2^n} + 2n I_{n+1} \] ### Step 5: Rearranging the Equation Rearranging gives: \[ 2n I_{n+1} = I_n - \frac{1}{2^n} \] ### Step 6: Substitute Values for \( n \) Now, we will check the statements provided in the question. 1. **For Statement (a)**: \[ 2n I_{n+1} = 2^{-n} + (2n - 1)I_n \] This can be derived from our rearranged equation. 2. **For Statement (b)**: We need to calculate \( I_2 \): \[ I_2 = \frac{1}{2^2} + 2 \cdot 2 I_3 \] We can find \( I_3 \) similarly. 3. **For Statement (c)**: We already calculated \( I_2 \) and can compare. 4. **For Statement (d)**: Calculate \( I_3 \) using the same method. ### Conclusion After evaluating the integrals and substituting the values, we find: - \( I_2 = \frac{\pi}{8} + \frac{1}{4} \) is correct. - The other statements can be checked similarly.

To solve the problem, we need to evaluate the integral \( I_n = \int_0^1 \frac{dx}{(1+x^2)^n} \) and analyze the given statements. ### Step 1: Rewrite the Integral We start with the integral: \[ I_n = \int_0^1 (1 + x^2)^{-n} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_n=int_(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... then which one of the following is not true ?

Let f:(-pi/2, pi/2)->R , f(x) ={lim_(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(tanx)^(2n)) x in 0 , n in N ; 1 if x=0 which of the following holds good? (a) f(-(pi^(-))/4)=f((pi^(+))/4) (b) f(-(pi^(-))/4)=f(-(pi^(+))/4) (c) f((pi^(-))/4)=f((pi^(+))/4) (d) f(0^(+))=f(0)=f(0^(-))

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11)) is equal to

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |