Home
Class 12
MATHS
A continuous function f(x) satisfies the...

A continuous function `f(x)` satisfies the relation `f(x)=e^x+int_0^1 e^xf(t)dt` then `f(1)=`

A

`f(0)lt0`

B

`f(x)` is a decreasing function

C

`f(x)` is increasing function

D

`int_(0)^(1)f(x)dxgt0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(1) \) given the relation: \[ f(x) = e^x + \int_0^1 e^x f(t) \, dt \] ### Step 1: Simplify the integral expression We can factor out \( e^x \) from the integral since it does not depend on \( t \): \[ f(x) = e^x + e^x \int_0^1 f(t) \, dt \] Let \( k = \int_0^1 f(t) \, dt \). Then we can rewrite the equation as: \[ f(x) = e^x + e^x k \] ### Step 2: Factor out \( e^x \) Now, we can factor \( e^x \) out of the right-hand side: \[ f(x) = e^x (1 + k) \] ### Step 3: Substitute \( f(t) \) into the integral Now, we substitute \( f(t) \) back into the definition of \( k \): \[ k = \int_0^1 f(t) \, dt = \int_0^1 e^t (1 + k) \, dt \] ### Step 4: Evaluate the integral We can factor out \( (1 + k) \) from the integral: \[ k = (1 + k) \int_0^1 e^t \, dt \] The integral \( \int_0^1 e^t \, dt \) can be calculated as follows: \[ \int_0^1 e^t \, dt = [e^t]_0^1 = e - 1 \] Thus, we have: \[ k = (1 + k)(e - 1) \] ### Step 5: Rearranging the equation Expanding this gives: \[ k = (e - 1) + k(e - 1) \] Rearranging terms yields: \[ k - k(e - 1) = e - 1 \] Factoring out \( k \): \[ k(1 - (e - 1)) = e - 1 \] This simplifies to: \[ k(2 - e) = e - 1 \] ### Step 6: Solve for \( k \) Now, we can solve for \( k \): \[ k = \frac{e - 1}{2 - e} \] ### Step 7: Substitute \( k \) back into \( f(x) \) Now that we have \( k \), we can substitute it back into the expression for \( f(x) \): \[ f(x) = e^x \left(1 + \frac{e - 1}{2 - e}\right) \] This simplifies to: \[ f(x) = e^x \left(\frac{(2 - e) + (e - 1)}{2 - e}\right) = e^x \left(\frac{1}{2 - e}\right) \] ### Step 8: Find \( f(1) \) Finally, we substitute \( x = 1 \) to find \( f(1) \): \[ f(1) = e^1 \cdot \frac{1}{2 - e} = \frac{e}{2 - e} \] Thus, the value of \( f(1) \) is: \[ \boxed{\frac{e}{2 - e}} \]

To solve the problem, we need to find the value of \( f(1) \) given the relation: \[ f(x) = e^x + \int_0^1 e^x f(t) \, dt \] ### Step 1: Simplify the integral expression ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

Find f(x) if it satisfies the relation f(x) = e^(x) + int_(0)^(1) (x+ye^(x))f(y) dy .

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Let f: R to R be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |