Home
Class 12
MATHS
int0^x{int0^uf(t)dx}\ du is equal to (...

`int_0^x{int_0^uf(t)dx}\ du` is equal to (a) `int_0^x(x-u)f(u)du` (b) `int_0^x uf(x-u)du` (c) `x int_0^xf(u)du` (d) `x int_0^x uf(u-x)du`

A

`int_(0)^(x)(x-u)f(u)du`

B

`int_(0)^(x) uf(x-u)du`

C

`x int_(0)^(x)f(u)du`

D

`x int_(0)^(x)uf(u-x)du`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^x \left( \int_0^u f(t) \, dt \right) du \), we can follow these steps: ### Step 1: Understand the Structure of the Integral We have a double integral where the outer integral is with respect to \( u \) and the inner integral is with respect to \( t \). The limits of the inner integral depend on \( u \). ### Step 2: Change the Order of Integration We can change the order of integration. The region of integration is defined by \( 0 \leq t \leq u \) and \( 0 \leq u \leq x \). This means we can also express the integral as: \[ \int_0^x \left( \int_t^x du \right) f(t) \, dt \] Here, for a fixed \( t \), \( u \) ranges from \( t \) to \( x \). ### Step 3: Evaluate the Inner Integral The inner integral \( \int_t^x du \) can be evaluated easily: \[ \int_t^x du = x - t \] Thus, we can rewrite the double integral as: \[ \int_0^x (x - t) f(t) \, dt \] ### Step 4: Rewrite the Integral Now we have: \[ \int_0^x (x - t) f(t) \, dt \] This expression can be rewritten in terms of \( u \) by substituting \( t \) with \( u \): \[ \int_0^x (x - u) f(u) \, du \] ### Conclusion Thus, the original integral simplifies to: \[ \int_0^x (x - u) f(u) \, du \] This matches option (a). ### Final Answer The answer is: \[ \int_0^x (x - u) f(u) \, du \quad \text{(Option a)} \] ---

To solve the integral \( \int_0^x \left( \int_0^u f(t) \, dt \right) du \), we can follow these steps: ### Step 1: Understand the Structure of the Integral We have a double integral where the outer integral is with respect to \( u \) and the inner integral is with respect to \( t \). The limits of the inner integral depend on \( u \). ### Step 2: Change the Order of Integration We can change the order of integration. The region of integration is defined by \( 0 \leq t \leq u \) and \( 0 \leq u \leq x \). This means we can also express the integral as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_0^x {int_0^u f(t) dt}du is equal to (a) int_0^x (x-u) f(u) (b) int_0^xuf(x-u)du (c) x int_0^x f(u) du (d) x int_0^x uf(u-x)du

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

int_0^2{x}^([x])dx

int_0^[x] dx

int_0^1 (x/(x+1))dx

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

int_0^(2a)f(x)dx is equal to a. 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

int_0^2||x-1|-x|dx

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |