Home
Class 12
MATHS
Consider the function f(theta)=int(0)^(1...

Consider the function `f(theta)=int_(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(sqrt(1-x^(2)))dx`, where `0le theta le (pi)/2`, then

A

`f_("min")=sqrt(2)-1`

B

`f_("min")=sqrt(2)+1`

C

`f_("max")=1`

D

`f_("max")=(pi)/2-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral function defined as: \[ f(\theta) = \int_{0}^{1} \frac{|\sqrt{1 - x^2} - \sin \theta|}{\sqrt{1 - x^2}} \, dx \] where \(0 \leq \theta \leq \frac{\pi}{2}\). ### Step 1: Substitution We can use the substitution \(x = \cos \phi\), which gives \(dx = -\sin \phi \, d\phi\). The limits change as follows: - When \(x = 0\), \(\phi = \frac{\pi}{2}\) - When \(x = 1\), \(\phi = 0\) Thus, we rewrite the integral: \[ f(\theta) = \int_{\frac{\pi}{2}}^{0} \frac{|\sqrt{1 - \cos^2 \phi} - \sin \theta|}{\sqrt{1 - \cos^2 \phi}} (-\sin \phi) \, d\phi \] This simplifies to: \[ f(\theta) = \int_{0}^{\frac{\pi}{2}} \frac{|\sin \phi - \sin \theta|}{\sin \phi} \sin \phi \, d\phi = \int_{0}^{\frac{\pi}{2}} |\sin \phi - \sin \theta| \, d\phi \] ### Step 2: Splitting the Integral Next, we need to split the integral based on the value of \(\sin \theta\): - For \(\phi\) in \([0, \theta]\), \(\sin \phi \leq \sin \theta\) - For \(\phi\) in \([\theta, \frac{\pi}{2}]\), \(\sin \phi \geq \sin \theta\) Thus, we can write: \[ f(\theta) = \int_{0}^{\theta} (\sin \theta - \sin \phi) \, d\phi + \int_{\theta}^{\frac{\pi}{2}} (\sin \phi - \sin \theta) \, d\phi \] ### Step 3: Evaluating Each Integral Now we evaluate each part separately. 1. **First Integral**: \[ \int_{0}^{\theta} (\sin \theta - \sin \phi) \, d\phi = \sin \theta \cdot \theta - \int_{0}^{\theta} \sin \phi \, d\phi \] The integral of \(\sin \phi\) is \(-\cos \phi\), so: \[ = \sin \theta \cdot \theta + \cos(0) - \cos(\theta) = \sin \theta \cdot \theta + 1 - \cos \theta \] 2. **Second Integral**: \[ \int_{\theta}^{\frac{\pi}{2}} (\sin \phi - \sin \theta) \, d\phi = \int_{\theta}^{\frac{\pi}{2}} \sin \phi \, d\phi - \sin \theta \cdot \left(\frac{\pi}{2} - \theta\right) \] Again, the integral of \(\sin \phi\) gives: \[ = [-\cos \phi]_{\theta}^{\frac{\pi}{2}} - \sin \theta \cdot \left(\frac{\pi}{2} - \theta\right) = (0 + \cos \theta) - \sin \theta \cdot \left(\frac{\pi}{2} - \theta\right) \] ### Step 4: Combine the Results Now we combine both parts: \[ f(\theta) = \left(\sin \theta \cdot \theta + 1 - \cos \theta\right) + \left(\cos \theta - \sin \theta \cdot \left(\frac{\pi}{2} - \theta\right)\right) \] This simplifies to: \[ f(\theta) = \sin \theta \cdot \theta + 1 - \sin \theta \cdot \left(\frac{\pi}{2} - \theta\right) \] ### Step 5: Finding Minimum and Maximum To find the minimum and maximum values of \(f(\theta)\) over the interval \([0, \frac{\pi}{2}]\), we can evaluate \(f(0)\), \(f\left(\frac{\pi}{4}\right)\), and \(f\left(\frac{\pi}{2}\right)\): 1. **At \(\theta = 0\)**: \[ f(0) = 1 \] 2. **At \(\theta = \frac{\pi}{4}\)**: \[ f\left(\frac{\pi}{4}\right) = \sqrt{2} - 1 \] 3. **At \(\theta = \frac{\pi}{2}\)**: \[ f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} - 1 \] ### Conclusion From the evaluations, we find that: - Minimum value occurs at \(\theta = \frac{\pi}{4}\) with \(f\left(\frac{\pi}{4}\right) = \sqrt{2} - 1\). - Maximum value occurs at \(\theta = 0\) with \(f(0) = 1\). Thus, the minimum value is \(\sqrt{2} - 1\) and the maximum value is \(1\).

To solve the problem, we need to evaluate the integral function defined as: \[ f(\theta) = \int_{0}^{1} \frac{|\sqrt{1 - x^2} - \sin \theta|}{\sqrt{1 - x^2}} \, dx \] where \(0 \leq \theta \leq \frac{\pi}{2}\). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Prove that : int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)

Let f(theta) =int_(0)^(1) (x+ sin theta )^(2) dx and g(theta)=int_(0)^(1)(x+ cos theta )^(2) dx where theta in [0,2 pi] . The quantity f (theta) -g(theta), AA theta in the interval given in column I, is

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Find the number points where f (theta) = int _(-1)^(1) (sin theta dx )/(1-2x cos theta + x ^(2)) is discontinous where thetain [0, 2pi].

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |