Home
Class 12
MATHS
f:[0,1)toR be a non increasing function ...

`f:[0,1)toR` be a non increasing function then for `alphaepsilon (0,1)`

A

`alpha int_(0)^(1)f(x) dx le int_(0)^(alpha)f(x)dx`

B

`alpha int_(0)^(1)f(x)dx ge int_(0)^(alpha)f(x)dx`

C

`alpha^(2) int_(0)^(1)f(x)dxleint_(0)^(alpha) f(x)dx`

D

`sqrt(alpha) int_(0)^(1)f(x)dxgeint_(0)^(alpha)f(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given non-increasing function \( f: [0, 1) \to \mathbb{R} \) and the implications of the inequality involving the integral of \( f \). ### Step-by-step Solution: 1. **Understanding the Problem**: We are given that \( f \) is a non-increasing function defined on the interval \([0, 1)\). We need to analyze the inequalities involving the integral of \( f \) over different intervals. 2. **Change of Variables in the Integral**: We start with the integral \( \int_0^\alpha f(x) \, dx \). To analyze this, we can use a change of variables. Let \( x = \alpha t \), which implies \( dx = \alpha \, dt \). The limits of integration change accordingly: when \( x = 0 \), \( t = 0 \) and when \( x = \alpha \), \( t = 1 \). \[ \int_0^\alpha f(x) \, dx = \int_0^1 f(\alpha t) \alpha \, dt \] 3. **Analyzing the Non-Increasing Property**: Since \( f \) is non-increasing, we have \( f(\alpha t) \geq f(t) \) for \( t \in [0, 1] \) because \( \alpha t < t \) when \( \alpha < 1 \). 4. **Integrating the Inequality**: We can now integrate both sides of the inequality \( f(\alpha t) \geq f(t) \): \[ \int_0^1 f(\alpha t) \, dt \geq \int_0^1 f(t) \, dt \] 5. **Multiplying by \( \alpha \)**: Since \( \alpha > 0 \), we can multiply the entire inequality by \( \alpha \) without changing the direction of the inequality: \[ \alpha \int_0^1 f(\alpha t) \, dt \geq \alpha \int_0^1 f(t) \, dt \] 6. **Substituting Back**: Recall that \( \int_0^\alpha f(x) \, dx = \alpha \int_0^1 f(\alpha t) \, dt \). Therefore, we can rewrite our inequality as: \[ \int_0^\alpha f(x) \, dx \geq \alpha \int_0^1 f(x) \, dx \] 7. **Conclusion**: This means that the second option is correct: \[ \int_0^\alpha f(x) \, dx \geq \alpha \int_0^1 f(x) \, dx \] ### Final Answer: The correct option is: \[ \int_0^\alpha f(x) \, dx \geq \alpha \int_0^1 f(x) \, dx \]

To solve the problem, we need to analyze the given non-increasing function \( f: [0, 1) \to \mathbb{R} \) and the implications of the inequality involving the integral of \( f \). ### Step-by-step Solution: 1. **Understanding the Problem**: We are given that \( f \) is a non-increasing function defined on the interval \([0, 1)\). We need to analyze the inequalities involving the integral of \( f \) over different intervals. 2. **Change of Variables in the Integral**: We start with the integral \( \int_0^\alpha f(x) \, dx \). To analyze this, we can use a change of variables. Let \( x = \alpha t \), which implies \( dx = \alpha \, dt \). The limits of integration change accordingly: when \( x = 0 \), \( t = 0 \) and when \( x = \alpha \), \( t = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:[0,1]to R be a continuous function then the maximum value of int_(0)^(1)f(x).x^(2)dx-int_(0)^(1)x.(f(x))^(2)dx for all such function(s) is:

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2

Show that f(x)=tan^(-1)(sinx+cosx) is an increasing function on the interval (0,\ pi//4) .

If f:[1,10]->[1,10] is a non-decreasing function and g:[1,10]->[1,10] is a non-increasing function. Let h(x)=f(g(x)) with h(1)=1, then h(2)

Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x))=1 for all x in[0,1] then:

Show that f(x)=(x-1)e^x+1 is an increasing function for all x > 0.

Show that f(x)=(x-1)e^x+1 is an increasing function for all x >0 .

Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 for all x in (0,1) and f((1)/(2))=(sqrt(3))/(2) . Suppose for all x, underset(x to x)lim(overset(1)underset(0)int sqrt(1(f(s))^(2))dxoverset(x)underset(0)int sqrt(1(f(s))^(2))ds)/(f(t)-f(x))=f(x) Then, the value of f((1)/(4)) belongs to

Let f:[0,1] rarr [0,1] be a continuous function. Then prove that f(x)=x for at least one 0lt=xlt=1.

Let f:[0,,∞) rarr [0,,∞)and g:[0,,∞) rarr [0,,∞) be non increasing and non decreasing functions respectively and h(x) =g(f(x)). If h(0)=0 .Then show h(x) is always identically zero.

CENGAGE ENGLISH-DEFINITE INTEGRATION -MCQ_TYPE
  1. If g(x)=int0^x2|t|dt ,t h e n (a) g(x)=x|x| (b)g(x) is monotonic (...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h e v a l u eofint0^oo(dx)/(1+x^4)i s (a) s a m ea st h a tofint0...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt, then f(x+pi) is (a) f(x)+f(...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an i...

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}\ du is equal to (a) int0^x(x-u)f(u)du (b) int0...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |