Home
Class 12
MATHS
If A(theta)=[(sin theta, i cos theta),(i...

If `A(theta)=[(sin theta, i cos theta),(i cos theta, sin theta)]`, then which of the following is not true ?

A

`A(theta)^(-1)=A(pi-theta)`

B

`A(theta)+A(pi+theta)` is a null matrix

C

`A(theta)` is invertible for all `theta in R`

D

`A(theta)^(-1)=A(-theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A(\theta) = \begin{pmatrix} \sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta \end{pmatrix} \) and determine which of the provided statements about it is not true. ### Step 1: Calculate the Determinant of \( A(\theta) \) The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A(\theta) \): - \( a = \sin \theta \) - \( b = i \cos \theta \) - \( c = i \cos \theta \) - \( d = \sin \theta \) Thus, the determinant is: \[ \text{det}(A(\theta)) = \sin \theta \cdot \sin \theta - (i \cos \theta)(i \cos \theta) \] Calculating this gives: \[ \text{det}(A(\theta)) = \sin^2 \theta - (-1) \cos^2 \theta = \sin^2 \theta + \cos^2 \theta \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \text{det}(A(\theta)) = 1 \] ### Step 2: Check if \( A(\theta) \) is Invertible Since the determinant is 1 (which is not equal to zero), the matrix \( A(\theta) \) is invertible for all \( \theta \). ### Step 3: Check the Statement \( A(\theta)^{-1} = A(\pi - \theta) \) To find \( A(\pi - \theta) \): \[ A(\pi - \theta) = \begin{pmatrix} \sin(\pi - \theta) & i \cos(\pi - \theta) \\ i \cos(\pi - \theta) & \sin(\pi - \theta) \end{pmatrix} \] Using the identities \( \sin(\pi - \theta) = \sin \theta \) and \( \cos(\pi - \theta) = -\cos \theta \): \[ A(\pi - \theta) = \begin{pmatrix} \sin \theta & -i \cos \theta \\ -i \cos \theta & \sin \theta \end{pmatrix} \] Next, we calculate \( A(\theta)^{-1} \). The inverse of a 2x2 matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Thus, \[ A(\theta)^{-1} = \begin{pmatrix} \sin \theta & -i \cos \theta \\ -i \cos \theta & \sin \theta \end{pmatrix} \] This shows that: \[ A(\theta)^{-1} = A(\pi - \theta) \] So, the statement \( A(\theta)^{-1} = A(\pi - \theta) \) is true. ### Step 4: Check the Statement \( A(\pi + \theta) = -A(\theta) \) For \( A(\pi + \theta) \): \[ A(\pi + \theta) = \begin{pmatrix} \sin(\pi + \theta) & i \cos(\pi + \theta) \\ i \cos(\pi + \theta) & \sin(\pi + \theta) \end{pmatrix} \] Using the identities \( \sin(\pi + \theta) = -\sin \theta \) and \( \cos(\pi + \theta) = -\cos \theta \): \[ A(\pi + \theta) = \begin{pmatrix} -\sin \theta & -i \cos \theta \\ -i \cos \theta & -\sin \theta \end{pmatrix} = -A(\theta) \] Thus, the statement \( A(\pi + \theta) = -A(\theta) \) is true. ### Step 5: Check the Statement \( A(\theta)^{-1} = A(-\theta) \) For \( A(-\theta) \): \[ A(-\theta) = \begin{pmatrix} \sin(-\theta) & i \cos(-\theta) \\ i \cos(-\theta) & \sin(-\theta) \end{pmatrix} \] Using the identities \( \sin(-\theta) = -\sin \theta \) and \( \cos(-\theta) = \cos \theta \): \[ A(-\theta) = \begin{pmatrix} -\sin \theta & i \cos \theta \\ i \cos \theta & -\sin \theta \end{pmatrix} \] This is not equal to \( A(\theta)^{-1} \) which is: \[ A(\theta)^{-1} = \begin{pmatrix} \sin \theta & -i \cos \theta \\ -i \cos \theta & \sin \theta \end{pmatrix} \] Thus, the statement \( A(\theta)^{-1} = A(-\theta) \) is not true. ### Conclusion The statement that is not true is: **Option 4: \( A(\theta)^{-1} = A(-\theta) \)**.

To solve the problem, we need to analyze the given matrix \( A(\theta) = \begin{pmatrix} \sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta \end{pmatrix} \) and determine which of the provided statements about it is not true. ### Step 1: Calculate the Determinant of \( A(\theta) \) The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

([cos theta+i sin theta)/(sin theta+i cos theta))^(4)=?

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

CENGAGE ENGLISH-MATRICES-Multiple Correct Answer
  1. If A=[1-1 2 1],B=[a1b-1]a n d(A+B)^2=A^2+b^2+2A B ,t h e n a=-1 b. a=...

    Text Solution

    |

  2. If AB=A and BA=B then which of the following is/are true ?

    Text Solution

    |

  3. If A(theta)=[(sin theta, i cos theta),(i cos theta, sin theta)], then ...

    Text Solution

    |

  4. Let A and B be two nonsingular square matrices, A^(T) and B^(T) are th...

    Text Solution

    |

  5. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  6. If A1=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)],A2=[(0,...

    Text Solution

    |

  7. Suppose a(1), a(2), .... Are real numbers, with a(1) ne 0. If a(1), a(...

    Text Solution

    |

  8. If alpha,beta,gamma are three real numbers and A=[(1,"cos"(alpha-beta)...

    Text Solution

    |

  9. If D(1) and D(2) are two 3xx3 diagonal matrices, then which of the fol...

    Text Solution

    |

  10. Let A be the 2 xx 2 matrix given by A=[a("ij")] where a("ij") in {0, 1...

    Text Solution

    |

  11. If S=[(0,1,1),(1,0,1),(1,1,0)]a n dA=[(b+c,c+a,b-c),(c-b,c+b, a-b),(b-...

    Text Solution

    |

  12. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  13. Let A=[(1,2,2),(2,1,2),(2,2,1)] . Then A^2-4A-5I3=O b. A^(-1)=1/5(A-4...

    Text Solution

    |

  14. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then which is true a. A^(3)-A^(2)=...

    Text Solution

    |

  15. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  16. If A=((a(i j)))(nxxn) and f is a function, we define f(A)=((f(a(i j)))...

    Text Solution

    |

  17. If A is a matrix such that A^2+A+2I=Odot, the which of the following i...

    Text Solution

    |

  18. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  19. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  20. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)] , then :

    Text Solution

    |