Home
Class 12
MATHS
Let A=[(1,2,2),(2,1,2),(2,2,1)] . Then ...

Let `A=[(1,2,2),(2,1,2),(2,2,1)]` . Then `A^2-4A-5I_3=O` b. `A^(-1)=1/5(A-4I_3)` c. `A^3` is not invertible d. `A^2` is invertible

A

`A^(2)-4A-5I_(3)=O`

B

`A^(-1)=1/5 (A-4I_(3))`

C

`A^(3)` is not invertible

D

`A^(2)` is invertible

Text Solution

Verified by Experts

`A^(2)=[(1,2,2),(2,1,2),(2,2,1)][(1,2,2),(2,1,2),(2,2,1)]=[(9,8,8),(8,9,8),(8,8,9)]`
We have,
`A^(2)-4A-5I_(3)`
`=[(9,8,8),(8,9,8),(8,8,9)]-4 [(1,2,2),(2,1,2),(2,2,1)]-5 [(1,0,0),(0,1,0),(0,0,1)]=O`
or `5I_(3)=A^(2)-4A=A(A-4I_(3))`
or `I_(3)=A. 1/5 (A-4I_(3))` or `A^(-1) =1/5 (A-4I_(3))`
Note that `|A|=5`. Since `|A^(3)|=|A|^(3)=5^(3) ne 0, A^(3)` is inveritible. Similarly, `A^(2)` is invertrible.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O .

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I .

If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I .

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0 , then B is equal to

If [(1,a,2),(1,2,5),(2,1,1)] is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

CENGAGE ENGLISH-MATRICES-Multiple Correct Answer
  1. If S=[(0,1,1),(1,0,1),(1,1,0)]a n dA=[(b+c,c+a,b-c),(c-b,c+b, a-b),(b-...

    Text Solution

    |

  2. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  3. Let A=[(1,2,2),(2,1,2),(2,2,1)] . Then A^2-4A-5I3=O b. A^(-1)=1/5(A-4...

    Text Solution

    |

  4. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then which is true a. A^(3)-A^(2)=...

    Text Solution

    |

  5. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  6. If A=((a(i j)))(nxxn) and f is a function, we define f(A)=((f(a(i j)))...

    Text Solution

    |

  7. If A is a matrix such that A^2+A+2I=Odot, the which of the following i...

    Text Solution

    |

  8. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  9. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  10. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)] , then :

    Text Solution

    |

  11. If A is an invertible matrix, then (a d jdotA)^(-1) is equal to a.a d...

    Text Solution

    |

  12. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  13. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |

  14. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  15. If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I a...

    Text Solution

    |

  16. Let A, B be two matrices different from identify matrix such that AB=B...

    Text Solution

    |

  17. Let A and B be square matrices of the same order such that A^(2)=I and...

    Text Solution

    |

  18. Let B is an invertible square matrix and B is the adjoint of matrix A ...

    Text Solution

    |

  19. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  20. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |