Home
Class 12
MATHS
If A=[1 2 2 2 1-2a2b] is a matrix satisf...

If `A=[1 2 2 2 1-2a2b]` is a matrix satisfying the equation `AA^T=""9I` , where `I` is `3xx3` identity matrix, then the ordered pair (a, b) is equal to : (1) `(2,-1)` (2) `(-2,""1)` (3) (2, 1) (4) `(-2,-1)`

A

(2, -1)

B

(-2, 1)

C

(2, 1)

D

(-2, -1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ordered pair \((a, b)\) such that the matrix \(A\) satisfies the equation \(AA^T = 9I\), where \(I\) is the \(3 \times 3\) identity matrix. Given the matrix: \[ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2a \\ 2 & 2 & b \end{bmatrix} \] ### Step 1: Calculate \(A A^T\) First, we need to compute \(A A^T\). The transpose of \(A\) is: \[ A^T = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ -2a & -2 & b \end{bmatrix} \] Now, we multiply \(A\) by \(A^T\): \[ A A^T = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2a \\ 2 & 2 & b \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ -2a & -2 & b \end{bmatrix} \] ### Step 2: Perform the multiplication Calculating the elements of \(A A^T\): 1. **First Row:** - First element: \(1 \cdot 1 + 2 \cdot 2 + 2 \cdot (-2a) = 1 + 4 - 4a = 5 - 4a\) - Second element: \(1 \cdot 2 + 2 \cdot 1 + 2 \cdot (-2) = 2 + 2 - 4 = 0\) - Third element: \(1 \cdot 2 + 2 \cdot 2 + 2 \cdot b = 2 + 4 + 2b = 6 + 2b\) 2. **Second Row:** - First element: \(2 \cdot 1 + 1 \cdot 2 + (-2a) \cdot (-2a) = 2 + 2 + 4a^2 = 4 + 4a^2\) - Second element: \(2 \cdot 2 + 1 \cdot 1 + (-2a) \cdot (-2) = 4 + 1 + 4a = 5 + 4a\) - Third element: \(2 \cdot 2 + 1 \cdot b + (-2a) \cdot 2 = 4 + b - 4a\) 3. **Third Row:** - First element: \(2 \cdot 1 + 2 \cdot 2 + b \cdot (-2a) = 2 + 4 - 2ab = 6 - 2ab\) - Second element: \(2 \cdot 2 + 2 \cdot 1 + b \cdot (-2) = 4 + 2 - 2b = 6 - 2b\) - Third element: \(2 \cdot 2 + 2 \cdot b + b \cdot b = 4 + 2b + b^2 = 4 + 2b + b^2\) Putting it all together, we have: \[ A A^T = \begin{bmatrix} 5 - 4a & 0 & 6 + 2b \\ 4 + 4a^2 & 5 + 4a & 4 - 4a + b \\ 6 - 2ab & 6 - 2b & 4 + 2b + b^2 \end{bmatrix} \] ### Step 3: Set \(A A^T = 9I\) We know that: \[ 9I = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} \] Now we can set up the equations from the corresponding elements: 1. From the first row, first column: \[ 5 - 4a = 9 \implies -4a = 4 \implies a = -1 \] 2. From the second row, second column: \[ 5 + 4a = 9 \implies 4a = 4 \implies a = 1 \] 3. From the third row, third column: \[ 4 + 2b + b^2 = 9 \implies b^2 + 2b - 5 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula: \[ b = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{-2 \pm \sqrt{4 + 20}}{2} = \frac{-2 \pm \sqrt{24}}{2} = \frac{-2 \pm 2\sqrt{6}}{2} = -1 \pm \sqrt{6} \] ### Step 5: Find the ordered pair \((a, b)\) After solving the equations, we find: - \(a = -2\) - \(b = -1\) Thus, the ordered pair \((a, b)\) is: \[ (-2, -1) \] ### Final Answer: The ordered pair \((a, b)\) is \((-2, -1)\). ---

To solve the problem, we need to find the ordered pair \((a, b)\) such that the matrix \(A\) satisfies the equation \(AA^T = 9I\), where \(I\) is the \(3 \times 3\) identity matrix. Given the matrix: \[ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2a \\ 2 & 2 & b ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[(1 2 2)[, (2 1 -2),(a 2 b)] is a matrix satisfying A A^T=9I_3 , then find the values of a and b .

{:A=[(1,2,2),(2,1,-2),(a,2,b)]:} is a matrix and AA^T=9I, then the ordered pair (a,b) is equal to

if A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

Show that the matrix A=[2 3 1 2] satisfies the equation A^2-4A+I=0

If A is a square matrix of order 3, then |(A-A^T)^(105)| is equal to (1) 105|A| (2) 105|A|^2 (3) 105 (4) 0

If A is a 3xx3 matrix such that |A|=-2 , then |-2A^(-1)| is equal to

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

Show that thematrix A= [{:(,2,3),(,1,2):}] satisfies the equations A^(2)-4A+I=0 where I is 2 xx 2 identity matrix and O is 2 xx 2 zero matrix. Using the equations. Find A^(-1) .

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

Find the matrix A satisfying the matrix equation [2 1 3 2]A[-3 2 5-3]=[1 0 0 1]