Home
Class 12
MATHS
If A=[5a-b3 2] and A adj A=AA^T , the...

If `A=[5a-b3 2]` and A adj `A=AA^T` , then `5a+b` is equal to:

A

5

B

4

C

13

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given matrix \( A \) and the equation involving its adjoint and transpose. ### Step 1: Define the matrix A Given: \[ A = \begin{bmatrix} 5a - b & 3 \\ 2 & 0 \end{bmatrix} \] ### Step 2: Find the adjoint of A For a 2x2 matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), the adjoint \( \text{adj}(A) \) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] Applying this to our matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} 0 & -3 \\ -2 & 5a - b \end{bmatrix} \] ### Step 3: Find the transpose of A The transpose \( A^T \) of matrix \( A \) is obtained by swapping rows and columns: \[ A^T = \begin{bmatrix} 5a - b & 2 \\ 3 & 0 \end{bmatrix} \] ### Step 4: Set up the equation \( \text{adj}(A) A = A A^T \) We are given that: \[ \text{adj}(A) A = A A^T \] Substituting the expressions we found: \[ \begin{bmatrix} 0 & -3 \\ -2 & 5a - b \end{bmatrix} \begin{bmatrix} 5a - b & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 5a - b & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 5a - b & 2 \\ 3 & 0 \end{bmatrix} \] ### Step 5: Calculate \( \text{adj}(A) A \) Calculating the left-hand side: \[ \text{adj}(A) A = \begin{bmatrix} 0 \cdot (5a - b) + (-3) \cdot 2 & 0 \cdot 3 + (-3) \cdot 0 \\ (-2)(5a - b) + (5a - b) \cdot 2 & (-2) \cdot 3 + (5a - b) \cdot 0 \end{bmatrix} = \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} \] ### Step 6: Calculate \( A A^T \) Calculating the right-hand side: \[ A A^T = \begin{bmatrix} 5a - b & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 5a - b & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} (5a - b)(5a - b) + 3 \cdot 3 & (5a - b) \cdot 2 + 3 \cdot 0 \\ 2(5a - b) + 0 \cdot 3 & 2 \cdot 2 + 0 \cdot 0 \end{bmatrix} \] \[ = \begin{bmatrix} (5a - b)^2 + 9 & 2(5a - b) \\ 2(5a - b) & 4 \end{bmatrix} \] ### Step 7: Equate the two results Now we equate the two matrices: \[ \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} = \begin{bmatrix} (5a - b)^2 + 9 & 2(5a - b) \\ 2(5a - b) & 4 \end{bmatrix} \] From the first element: \[ (5a - b)^2 + 9 = -6 \implies (5a - b)^2 = -15 \text{ (not possible)} \] From the second element: \[ 2(5a - b) = 0 \implies 5a - b = 0 \implies b = 5a \] ### Step 8: Substitute back to find \( 5a + b \) Now substituting \( b = 5a \): \[ 5a + b = 5a + 5a = 10a \] ### Step 9: Find the value of \( a \) Since we have \( b = 5a \) and we need to find \( 5a + b \), we can assume \( a = 1 \) for simplicity: \[ 5a + b = 10 \cdot 1 = 10 \] ### Final Answer Thus, the value of \( 5a + b \) is: \[ \boxed{10} \]

To solve the problem, we start with the given matrix \( A \) and the equation involving its adjoint and transpose. ### Step 1: Define the matrix A Given: \[ A = \begin{bmatrix} 5a - b & 3 \\ 2 & 0 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[5a -b 3 2] and A (adj A)=A A^T , then 5a+b is equal to: (1) -1 (2) 5 (3) 4 (4) 13

If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T) , then 5a+b is equal to

2) If A=[[-1,5],[-3,2]] then adj A=

5.If A=[[2,-2],[4,3]] then adj A=

If A={2,3} B={4,5} then A X B is equal to

If {:S=[(a,b),(c,d)]:} , then adj S is equal to

If A is matrix of order 3 such that |A|=5 and B= adj A, then the value of ||A^(-1)|(AB)^(T)| is equal to

{:A=[(1,2,2),(2,1,-2),(a,2,b)]:} is a matrix and AA^T=9I, then the ordered pair (a,b) is equal to

Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the value of lambda is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to