Home
Class 12
MATHS
if A=[[2,-3],[-4,1]] then (3A^2+12A)=?...

if `A=[[2,-3],[-4,1]]` then `(3A^2+12A)=?`

A

`[(72,-63),(-84,51)]`

B

`[(72, -84),(-63,51)]`

C

`[(51,63),(84,72)]`

D

`[(51, 84),(63,72)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(3A^2 + 12A\) where \(A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}\), we will follow these steps: ### Step 1: Calculate \(A^2\) To find \(A^2\), we need to multiply matrix \(A\) by itself. \[ A^2 = A \times A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \] Calculating the elements of \(A^2\): - First row, first column: \[ (2 \times 2) + (-3 \times -4) = 4 + 12 = 16 \] - First row, second column: \[ (2 \times -3) + (-3 \times 1) = -6 - 3 = -9 \] - Second row, first column: \[ (-4 \times 2) + (1 \times -4) = -8 - 4 = -12 \] - Second row, second column: \[ (-4 \times -3) + (1 \times 1) = 12 + 1 = 13 \] Thus, we have: \[ A^2 = \begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix} \] ### Step 2: Calculate \(3A^2\) Now we will multiply \(A^2\) by 3. \[ 3A^2 = 3 \times \begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix} = \begin{bmatrix} 3 \times 16 & 3 \times -9 \\ 3 \times -12 & 3 \times 13 \end{bmatrix} = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix} \] ### Step 3: Calculate \(12A\) Next, we will multiply matrix \(A\) by 12. \[ 12A = 12 \times \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 12 \times 2 & 12 \times -3 \\ 12 \times -4 & 12 \times 1 \end{bmatrix} = \begin{bmatrix} 24 & -36 \\ -48 & 12 \end{bmatrix} \] ### Step 4: Add \(3A^2\) and \(12A\) Now we will add \(3A^2\) and \(12A\). \[ 3A^2 + 12A = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix} + \begin{bmatrix} 24 & -36 \\ -48 & 12 \end{bmatrix} \] Calculating the elements: - First row, first column: \[ 48 + 24 = 72 \] - First row, second column: \[ -27 + (-36) = -63 \] - Second row, first column: \[ -36 + (-48) = -84 \] - Second row, second column: \[ 39 + 12 = 51 \] Thus, we have: \[ 3A^2 + 12A = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix} \] ### Final Answer The final result is: \[ 3A^2 + 12A = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix} \] ---

To solve the problem \(3A^2 + 12A\) where \(A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}\), we will follow these steps: ### Step 1: Calculate \(A^2\) To find \(A^2\), we need to multiply matrix \(A\) by itself. \[ A^2 = A \times A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,-3),(-1,2):}] then A^(-1)=

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

If A = [(1,2),(3,4)] , then 2A^(-1)=

If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]] then

3) If A=[[1,2],[3,4]] ,verify that A(adj A)=(adj A)A=|A|I .

If A=[[-1,2],[3,4]] and B=[[2,-3],[5,1]] show that AB!=BA

If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I .