Home
Class 12
MATHS
Let omega!=1 be cube root of unity and S...

Let `omega!=1` be cube root of unity and `S` be the set of all non-singular matrices of the form `[1a bomega1comega^2omega1],w h e r e` each of `a ,b ,a n dc` is either `omegaoromega^2dot` Then the number of distinct matrices in the set `S` is a. 2 b. `6` c. `4` d. `8`

A

2

B

6

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the number of distinct non-singular matrices of the form: \[ \begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix} \] where \( a, b, c \) can each be either \( \omega \) or \( \omega^2 \), and \( \omega \) is a cube root of unity (i.e., \( \omega^3 = 1 \) and \( \omega \neq 1 \)). ### Step 1: Calculate the Determinant The determinant of the matrix can be computed using the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & c \\ \omega & 1 \end{vmatrix} - a \cdot \begin{vmatrix} \omega & c \\ \omega^2 & 1 \end{vmatrix} + b \cdot \begin{vmatrix} \omega & 1 \\ \omega^2 & \omega \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} 1 & c \\ \omega & 1 \end{vmatrix} = 1 \cdot 1 - c \cdot \omega = 1 - c\omega \) 2. \( \begin{vmatrix} \omega & c \\ \omega^2 & 1 \end{vmatrix} = \omega \cdot 1 - c \cdot \omega^2 = \omega - c\omega^2 \) 3. \( \begin{vmatrix} \omega & 1 \\ \omega^2 & \omega \end{vmatrix} = \omega \cdot \omega - 1 \cdot \omega^2 = \omega^2 - \omega^2 = 0 \) Putting it all together, we have: \[ \text{det}(A) = 1 - c\omega - a(\omega - c\omega^2) + b \cdot 0 \] This simplifies to: \[ \text{det}(A) = 1 - c\omega - a\omega + ac\omega^2 \] ### Step 2: Set the Determinant Not Equal to Zero For the matrix to be non-singular, we require: \[ 1 - c\omega - a\omega + ac\omega^2 \neq 0 \] ### Step 3: Analyze Possible Values for \( a, b, c \) Each of \( a, b, c \) can be either \( \omega \) or \( \omega^2 \). Therefore, we have: - \( a \) can take 2 values: \( \omega \) or \( \omega^2 \) - \( b \) can take 2 values: \( \omega \) or \( \omega^2 \) - \( c \) can take 2 values: \( \omega \) or \( \omega^2 \) This gives us a total of \( 2 \times 2 \times 2 = 8 \) combinations of \( (a, b, c) \). ### Step 4: Check Non-Singularity for Each Combination Now we need to check which combinations yield a non-zero determinant. 1. If \( a = \omega \) and \( c = \omega \): \[ \text{det}(A) = 1 - \omega^2 - \omega + \omega^2 \cdot \omega^2 = 1 - \omega - \omega^2 + 1 = 2 - (\omega + \omega^2) = 2 - 1 = 1 \neq 0 \] 2. If \( a = \omega \) and \( c = \omega^2 \): \[ \text{det}(A) = 1 - \omega^3 - \omega + \omega^2 \cdot \omega^2 = 1 - 1 - \omega + 1 = 1 - \omega \neq 0 \] 3. If \( a = \omega^2 \) and \( c = \omega \): \[ \text{det}(A) = 1 - \omega^2 - \omega^2 + \omega^2 \cdot \omega = 1 - 2\omega^2 + \omega^2 = 1 - \omega^2 \neq 0 \] 4. If \( a = \omega^2 \) and \( c = \omega^2 \): \[ \text{det}(A) = 1 - \omega^2 - \omega^2 + \omega^2 \cdot \omega^2 = 1 - 2\omega^2 + 1 = 2 - 2\omega^2 \neq 0 \] ### Conclusion After checking all combinations, we find that all combinations yield a non-zero determinant. Thus, all 8 combinations are valid. ### Final Answer The number of distinct non-singular matrices in the set \( S \) is: **d. 8**

To solve the problem, we need to determine the number of distinct non-singular matrices of the form: \[ \begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let omega != 1 be cube root of unity and S be the set of all non-singular matrices of the form [(1,a,b),(omega,1,c),(omega^2,omega,1)], where each of a,b, and c is either omega or omega^2. Then the number of distinct matrices in the set S is (a) 2 (b) 6 (c) 4 (d) 8

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

With 1,omega,omega^(2) as cube roots of unity, inverse of which of the following matrices exists?

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega ne 1 is a cube root of unity and a+b=21 , a^(3)+b^(3)=105 , then the value of (aomega^(2)+bomega)(aomega+bomega^(2)) is be equal to

If omega is a cube root of unity and (1+omega)^7=A+Bomega then find the values of A and B

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If 1,omega,omega^2 are the cube roots of unity, then /_\ is equal to.....

If omega is a cube root of unity but not equal to 1, then minimum value of abs(a+bomega+comega^(2)) , (where a,b and c are integers but not all equal ), is