Home
Class 12
MATHS
If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2...

If `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0)`, and f(0) = 0, then the value of f(1) is

A

`-1/2`

B

`1/2`

C

`-1/4`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the integral given in the function \( f(x) \) and find \( f(1) \). ### Step 1: Write down the integral The function is defined as: \[ f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} \, dx \] ### Step 2: Simplify the integrand Notice that we can factor out \( x^7 \) from the denominator: \[ x^2 + 1 + 2x^7 = x^7 \left( \frac{x^2}{x^7} + \frac{1}{x^7} + 2 \right) = x^7 \left( \frac{1}{x^5} + \frac{1}{x^7} + 2 \right) \] Thus, the integrand becomes: \[ \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} = \frac{5x^8 + 7x^6}{x^{14} \left( \frac{1}{x^5} + \frac{1}{x^7} + 2 \right)^2} \] ### Step 3: Change of variables Let \( t = x^{-5} + x^{-7} + 2 \). Then we differentiate: \[ \frac{dt}{dx} = -5x^{-6} - 7x^{-8} \] Thus, \[ dx = -\frac{dt}{5x^{-6} + 7x^{-8}} \] ### Step 4: Substitute in the integral Now we can substitute \( t \) into the integral: \[ f(x) = \int -\frac{1}{t^2} \, dt \] ### Step 5: Evaluate the integral The integral of \( -\frac{1}{t^2} \) is: \[ \int -\frac{1}{t^2} \, dt = \frac{1}{t} + C \] ### Step 6: Substitute back for \( t \) Substituting back for \( t \): \[ f(x) = \frac{1}{x^{-5} + x^{-7} + 2} + C \] ### Step 7: Use the condition \( f(0) = 0 \) We know \( f(0) = 0 \): \[ f(0) = \frac{1}{0^{-5} + 0^{-7} + 2} + C = 0 \] Since \( 0^{-5} \) and \( 0^{-7} \) are undefined, we consider the limit as \( x \to 0 \): \[ \lim_{x \to 0} f(x) = \frac{1}{2} + C = 0 \implies C = -\frac{1}{2} \] ### Step 8: Final expression for \( f(x) \) Thus, we have: \[ f(x) = \frac{1}{x^{-5} + x^{-7} + 2} - \frac{1}{2} \] ### Step 9: Calculate \( f(1) \) Now, we find \( f(1) \): \[ f(1) = \frac{1}{1^{-5} + 1^{-7} + 2} - \frac{1}{2} = \frac{1}{1 + 1 + 2} - \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = \frac{1}{4} - \frac{2}{4} = -\frac{1}{4} \] ### Final Answer The value of \( f(1) \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 8|11 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value of f(1) is :

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2 , then the value of f(-5) is _________.

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x+1)^3)dx is a rational function, then the value of f'(0) is