Home
Class 12
MATHS
Let n ge 2 be a natural number and 0 lt ...

Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)

A

`n/(n^2-1)(1-1/(sin^(n+1)theta))^((n+1)/n)+C`

B

`n/(n^2+1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`

C

`n/(n^2-1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`

D

`n/(n^2-1)(1+1/(sin^(n-1)theta))^((n+1)/n)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{(\sin^n \theta - \sin \theta)^{1/n} \cos \theta}{\sin^{n+1} \theta} \, d\theta, \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitution Let \( t = \sin \theta \). Then, \( d\theta = \frac{dt}{\cos \theta} \) and \( \cos \theta = \sqrt{1 - t^2} \). The limits of integration will change accordingly, but since we are not given specific limits, we will keep it general. ### Step 2: Rewrite the Integral Substituting \( t = \sin \theta \) into the integral, we have: \[ I = \int \frac{(t^n - t)^{1/n} \sqrt{1 - t^2}}{t^{n+1}} \cdot \frac{dt}{\sqrt{1 - t^2}}. \] The \( \sqrt{1 - t^2} \) terms cancel out: \[ I = \int \frac{(t^n - t)^{1/n}}{t^{n+1}} \, dt. \] ### Step 3: Simplify the Integral Now we can simplify the integrand: \[ I = \int (t^n - t)^{1/n} t^{-(n+1)} \, dt = \int \frac{(t^n - t)^{1/n}}{t^{n+1}} \, dt. \] ### Step 4: Factor Out \( t^n \) Factor out \( t^n \) from the term \( (t^n - t) \): \[ I = \int \frac{t^n(1 - t^{1-n})^{1/n}}{t^{n+1}} \, dt = \int (1 - t^{1-n})^{1/n} t^{-1} \, dt. \] ### Step 5: Further Substitution Let \( u = 1 - t^{1-n} \). Then, we differentiate to find \( dt \): \[ du = -\frac{1-n}{n} t^{-n} dt \implies dt = -\frac{n}{1-n} t^n du. \] ### Step 6: Substitute Back into the Integral Now substitute back into the integral: \[ I = \int u^{1/n} \left(-\frac{n}{1-n} t^n\right) t^{-1} du = -\frac{n}{1-n} \int u^{1/n} t^{n-1} du. \] ### Step 7: Integrate Now we can integrate \( u^{1/n} \): \[ \int u^{1/n} du = \frac{n}{n+1} u^{(n+1)/n} + C. \] ### Step 8: Substitute Back for \( u \) Substituting back for \( u \): \[ I = -\frac{n}{1-n} \cdot \frac{n}{n+1} (1 - t^{1-n})^{(n+1)/n} + C. \] ### Step 9: Final Substitution Finally, substituting back \( t = \sin \theta \): \[ I = -\frac{n^2}{(1-n)(n+1)} \left(1 - \sin^{1-n} \theta\right)^{(n+1)/n} + C. \] ### Final Answer Thus, the integral evaluates to: \[ I = -\frac{n^2}{(1-n)(n+1)} \left(1 - \sin^{1-n} \theta\right)^{(n+1)/n} + C. \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 8|11 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

int_(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in I ) is equal to