Home
Class 12
MATHS
If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f...

If `intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c`, where c is contant of intergration then `f(x)` equals to (a) `-4x^3-1` (b) `-1-2x^3` (c) `4x^3+1` (d) `1-2x^3`

A

`-4x^3-1`

B

`4x^3+1`

C

`-2x^3-1`

D

`-2x^3+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 e^{-4x^3} \, dx \) and find the function \( f(x) \) such that \[ \int x^5 e^{-4x^3} \, dx = \frac{1}{48} e^{-4x^3} f(x) + c, \] we will use the method of substitution. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = -4x^3 \). Then, we differentiate to find \( dt \): \[ dt = -12x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{-12x^2}. \] We also express \( x^2 \) in terms of \( t \): \[ x^3 = -\frac{t}{4} \quad \Rightarrow \quad x = \left(-\frac{t}{4}\right)^{1/3}. \] 2. **Express \( x^5 \)**: We can express \( x^5 \) as: \[ x^5 = (x^3)^{5/3} = \left(-\frac{t}{4}\right)^{5/3}. \] 3. **Substituting into the integral**: Substitute \( x^5 \) and \( dx \) into the integral: \[ \int x^5 e^{-4x^3} \, dx = \int \left(-\frac{t}{4}\right)^{5/3} e^{t} \left(\frac{dt}{-12x^2}\right). \] We need to express \( x^2 \) in terms of \( t \): \[ x^2 = \left(-\frac{t}{4}\right)^{2/3}. \] Thus, we can rewrite \( dx \) as: \[ dx = \frac{dt}{-12 \left(-\frac{t}{4}\right)^{2/3}}. \] 4. **Simplifying the integral**: The integral becomes: \[ \int \left(-\frac{t}{4}\right)^{5/3} e^{t} \left(\frac{dt}{-12 \left(-\frac{t}{4}\right)^{2/3}}\right). \] This simplifies to: \[ \int \frac{t^{5/3}}{4^{5/3}} e^{t} \cdot \frac{dt}{-12 \cdot \frac{t^{2/3}}{4^{2/3}}} = \int \frac{t^{5/3}}{-12 \cdot 4^{5/3 - 2/3}} e^{t} \, dt. \] 5. **Integrating by parts**: We can apply integration by parts \( \int u \, dv = uv - \int v \, du \) where \( u = t \) and \( dv = e^{t} dt \). 6. **Final expression**: After performing the integration and substituting back \( t = -4x^3 \), we find: \[ \int x^5 e^{-4x^3} \, dx = \frac{1}{48} e^{-4x^3} (t - 1) + c = \frac{1}{48} e^{-4x^3} (-4x^3 - 1) + c. \] 7. **Identifying \( f(x) \)**: From the expression, we can identify: \[ f(x) = -4x^3 - 1. \] ### Conclusion: Thus, the function \( f(x) \) is: \[ \boxed{-4x^3 - 1}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 8|11 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

The greatest ' x ' satisfying the inequation (2x+1)/3-(3x-1)/2>1 is: (a) -4 (b) 4 (c) 1 (d) -1

Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) tan^-1(g(x))+C then g(x) is equal to

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}| , where p is a constant, then (d^(3))/(dx^(3))(f(x)) , is

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f (x)=((x-1) (x-2))/((x-3)(x-4)), then number of local extremas for g (x) , where g (x) =f (|x|): (a) 3 (b) 4 (c) 5 (d) none of these